TECHNICAL PROCEDURE
TRAILER SUSPENSION SYSTEMS

SUBJECT: Bushing Replacement Procedure

LIT NO: L427
DATE: February 2019
REVISION: H

TABLE OF CONTENTS

Important Safety Notices .. 2
Conventions Applied in This Document .. 2
TRI-FUNCTIONAL® Bushing Replacement Tools ... 4
Pivot Bushing Inspection ... 5
Pivot Connection Disassembly .. 5
Bushing Removal .. 9
Evaluating Bushing Tube Edge Wear .. 13
Bushing Installation ... 15
Suspension Reassembly ... 20
HT™ Series Y-beam Bushing Replacement ... 22
BUSHING REPLACEMENT PROCEDURE

IMPORTANT SAFETY NOTICES

To help prevent personal injury and equipment damage; warnings, cautions and other relative statements included in T12007 are to be read carefully and applied during the performance of the procedures included in this document.

Improper maintenance, service or repair can cause damage to the vehicle and other property, personal injury, unsafe operating conditions and potentially void the manufacturer's warranty.

CONVENTIONS APPLIED IN THIS DOCUMENT
Various techniques are used in this document to convey important information, express safety issues, provide methods for CONTACTING HENDRICKSON and how to identify and apply HYPERLINKS.

EXPLANATION OF SIGNAL WORDS
Hazard signal words (such as DANGER, WARNING or CAUTION) appear in various locations throughout this publication. Information accented by one of these signal words must be observed at all times. Additional notes are utilized to emphasize areas of procedural importance and provide suggestions for ease of repair. The following definitions comply with ANSI Z535.6 and indicate the use of safety signal words as they appear throughout the publication.

⚠️ DANGER Indicates a hazardous situation that, if not avoided, will result in death or serious injury.

⚠️ WARNING Indicates a hazardous situation that, if not avoided, could result in death or serious injury.

⚠️ CAUTION Indicates a hazardous situation that, if not avoided, could result in minor or moderate injury.

⚠️ NOTICE Indicates information considered important, but not hazard-related (e.g. messages relating to property damage).

HYPERLINKS
Hyperlinks are identified by a dark grey line under the linked text. Internal links allow the reader to jump to a heading, step or page in this document. External links open the website or document referenced. While viewing electronically, activate the hyperlink by clicking on the underlined text.

CONTACTING HENDRICKSON
Contact Hendrickson Trailer Technical Services for technical assistance as needed. To do so, several options are available. Technical Services must be contacted before performing any warranty related service.

NOTE: DO NOT service a suspension or any component that is under warranty without first contacting Hendrickson Technical Services.

Prior to contacting Technical Services, it is best to have the following information about the vehicle and Hendrickson suspension available (all that apply):

- Hendrickson suspension information, (refer to L977 Suspension and Axle Identification) –
 - Suspension model number
 - Suspension serial number
 - Approximate number of suspension miles

- Trailer information (located on VIN plate) -
 - Type (van, reefer, flat bed, etc.)
 - Manufacturer
 - VIN (vehicle identification number)
 - In-service date (If the in-service date is unknown or not available, the vehicle date of manufacture will be substituted.)
 - Fleet/owner name
 - Unit #
• Failure information
 – Description of the system problem, the part number and/or the part description of the reported non-functioning part.
 – Date of failure.
 – Where applicable, location of problem on suspension / trailer (e.g., road side, front axle, rear axle, curb side rear, etc.).
• Digital photos of suspension and damaged areas.
• Special application approval documentation (if applicable).

PHONE
Contact Hendrickson directly in the United States at 866-RIDEAIR (743-3247). From the menu, select:
• Technical Services/Warranty for technical information.
• Other selections include:
 – Aftermarket Sales for replacement parts information and ordering.
 – Original Equipment Sales for parts inquiries and ordering for trailer manufacturers.

EMAIL
To contact Hendrickson Trailer Technical Services, use the following e-mail address:

HTTS@Hendrickson-intl.com

RELATED LITERATURE
If you suspect your version of this or any other Hendrickson manual is not “up-to-date”, the most current version is free online at:

www.Hendrickson-intl.com/TrailerLit

Available Hendrickson documentation can be viewed or downloaded from this site.

All Hendrickson online documentation is in PDF format that requires PDF reader software to open. A free application is downloadable from Adobe at http://get.adobe.com/reader/.

Other related literature may include:

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>B106</td>
<td>Pivot Bushing Inspection Procedure</td>
</tr>
<tr>
<td>L54</td>
<td>T Series Bushing Replacement Procedure</td>
</tr>
<tr>
<td>L466</td>
<td>Bushing Tool Instructions Poster</td>
</tr>
<tr>
<td>L578</td>
<td>Preventive Maintenance Guide</td>
</tr>
<tr>
<td>L579</td>
<td>Alignment Procedure</td>
</tr>
<tr>
<td>L583</td>
<td>Comprehensive Warranty Statement</td>
</tr>
<tr>
<td>L589</td>
<td>TRI-FUNCTIONAL® Bushing Replacement Tool Parts List</td>
</tr>
<tr>
<td>L750</td>
<td>Bushing Tube Spacer Inspection/Replacement Procedure</td>
</tr>
<tr>
<td>L893</td>
<td>Replacement Bushing Tube Spacer Orientation</td>
</tr>
<tr>
<td>T82001</td>
<td>TRI-FUNCTIONAL® Bushing Tool Information</td>
</tr>
<tr>
<td>SDS</td>
<td>www.Hendrickson-intl.com/TrailerLit</td>
</tr>
</tbody>
</table>

Table 1: Related Literature

Hendrickson reserves the right to make changes and improvements to its products and publications at any time. Consult the Hendrickson website www.Hendrickson-intl.com/TrailerLit for the latest version of this manual.

PREPARING TRAILER FOR MAINTENANCE SERVICE

NOTE: DO NOT service a suspension or any components that is under warranty without first contacting Hendrickson Technical Services. Refer to CONTACTING HENDRICKSON for details.

WARNING Do not work under a trailer supported only by jacks. Jacks can slip or fall over, resulting in serious personal injury. Always use safety stands to support a raised trailer.
TRI-FUNCTIONAL® BUSHING REPLACEMENT TOOLS

NOTE: The bushing replacement tool is not required for replacing the bushing assembly on an HT Y-beam suspension. For this suspension type, begin with PIVOT BUSHING INSPECTION on page 5 for pivot connection disassembly and HT™ SERIES Y-Beam Bushing Replacement on page 22 for bushing replacement and reassembly.

Hendrickson offers two TRI-FUNCTIONAL bushing tools (Figure 1 and shown on front cover): one for TRI-FUNCTIONAL wide (63/4-inch wide bushings) and one for TRI-FUNCTIONAL narrow (35/8-inch narrow bushings). The correct tool to use is easily determined by the bushing length or frame bracket width.

Notice
The tools and components cannot be used interchangeably. The proper tool must be used for its applicable bushing type.

Replacement parts are listed in Hendrickson literature number L589 TRI-FUNCTIONAL® Bushing Replacement Tool Parts List.

The bushing replacement procedure described in this document applies to both bushing tools. Enough similarity exists between use of the two tools so that a single procedure can be used to describe the bushing replacement process.

WIDE BUSHING TOOL

The wide bushing tool (Figure 1 also shown on front cover) is used to remove and replace pivot bushings on all T, HT Series, INTRAAX® and VANTRAAX® wide-bushing suspension systems. The 63/4-inch wide bushings on these suspensions are commonly referred to as wide bushing. The TRI-FUNCTIONAL® wide bushing (abbreviated TF II, is shown in Figure 2 and on the front cover). It has been produced since May 2003.

NARROW BUSHING TOOL

The narrow bushing tool (Figure 1, shown on front cover) is used to remove and replace pivot bushings on INTRAAX, VANTRAAX and all ULTRAA-K® suspension systems. The 35/8-inch TRI-FUNCTIONAL narrow bushing (Figure 3, also shown on front cover) is abbreviated as TF III and commonly referred to as narrow bushing.

For more bushing tool drive plate replacement information, refer to Hendrickson literature number L589 TRI-FUNCTIONAL Bushing Replacement Tool Parts List.

2 If HT Y-beam suspension (both welded collar and QUIK-ALIGN® style pivot connections), the entire bushing assembly gets replaced, without the need for a replacement tool. Refer to SUSPENSION REASSEMBLY on page 20.
PIVOT BUSHING INSPECTION
Prior to pivot connection disassembly, bushings and spacers can be quickly inspected according to Hendrickson literature numbers B106 and L750 respectively.

PIVOT CONNECTION DISASSEMBLY
Prior to disassembly, perform PREPARING TRAILER FOR MAINTENANCE SERVICE on page 3.

IMPORTANT: If one bushing is bad on an axle, it is recommended that both bushings be replaced.

For HT™ Series Y-Beam pivot connection disassembly, refer to HT™ SERIES Y-BEAM BUSHING REPLACEMENT on page 22.

Hendrickson suspensions are equipped with either QUIK-ALIGN® or WELDED COLLAR style pivot connection hardware. To disassemble, refer to the below applicable procedure.

⚠️ CAUTION Failure to follow these pivot connection assembly procedures and to properly torque the pivot connection fasteners could result in a failed pivot connection and damage to the axle, suspension or trailer.

QUIK-ALIGN
This pivot connection style (Figure 4) can be found on INTRAAX®, VANTRAAX®, ULTRA-K®, HT™ Series and HT Y-beam suspensions.

1. Remove the TORQ-RITE® nut from the pivot bolt.
2. Remove the pivot bolt from the frame bracket.
3. Carefully remove the concentric and eccentric alignment collars.

NOTE: If in good condition, they can be potentially cleaned and reused when the pivot connection is reassembled with the new bushing. Otherwise, replace with new.

4. Discard the pivot bolt, TORQ-RITE nut and hardened flat washers.

IMPORTANT: Whenever the QUIK-ALIGN style pivot connection is disassembled or loosened for any reason, the pivot bolt and TORQ-RITE nut must be removed and discarded. A new shear-type pivot bolt and TORQ-RITE nut must be used for pivot connection reassembly.

NOTE: Refer to Figure 44 on page 22 for an exploded view of the HT Y-beam QUIK-ALIGN pivot connection.
WELDED COLLAR

This pivot connection style (Figure 5 and Figure 6) can be found on T and HT Series suspensions with the pivot fastener attaching the suspension beams to a frame bracket.

NOTE: Welded collars must be removed for HT Y-beam suspension bushing assembly replacement. Refer to Y-BEAM PIVOT CONNECTION DISASSEMBLY on page 23.

1. Carefully cut or grind the Huck fastener from the Huck bolt (or the nut from the cap screw) and remove the Huck bolt (or hex cap screw) from the frame bracket.

 Figure 7: Removing welded collar pivot bolt

 IMPORTANT: DO NOT remove the alignment weld (Figure 7). On a frame bracket with the welded collar style pivot connection, the bushing can be replaced without affecting axle alignment.

2. Discard the Huck fastener (or the cap screw and nut).

The welded collar style pivot connection is either clamped together with a Huck fastener or torqued and tack welded together with a 1 1/8-inch heavy hex cap screw and nut.
BUSHING REPLACEMENT PROCEDURE

SEPARATING BEAM FROM FRAME BRACKET

1. Using the jack, carefully lower the suspension beam assembly out of the frame bracket to expose the bushings. Bushing tube spacers should fall out as the beam is lowered.

2. Inspect bushing tube spacers. If worn through, check for possible damage to frame bracket according to procedures in L750 Bushing Tube Spacer Inspection/Replacement Procedure.

3. Discard the bushing tube spacers.

IMPORTANT: If within the warranty time period, the following is recommended at this time as defined in Hendrickson literature number L583 Comprehensive Warranty Statement:

• CONTACTING HENDRICKSON prior to service.

• SEND photos to HTTS@hendrickson-intl.com for evaluation.

NOTE: If within warranty, the original bushings must be returned to Hendrickson for further warranty consideration.

4. Inspect bushing tube condition. Some wear (polished metal) on the edge of the bushing tube is considered normal (Figure 8) due to the pivoting motion inherent with this connection. Missing metal where the bushing tube’s radius edge has been worn away is considered abnormal. If this type of wear is present, determine how much wear has occurred according to specifications in Table 2.

The amount of bushing tube wear can be determined by measuring the width of the worn bushing tube (Figure 9) and subtracting this measured dimension from the new tube width.
EXAMPLE A: WIDE BUSHING tube measurement:
Suppose the inspection reveals extensive bushing tube wear and the bushing tube measures 5\(\frac{15}{16}\) inches. Subtracting 5\(\frac{15}{16}\) from 6 reveals the amount of bushing tube material that has worn away, in this case \(\frac{1}{16}\) of an inch.

\[
6'' - 5\frac{15}{16}'' = \frac{1}{16}''
\]

<table>
<thead>
<tr>
<th>IF THE BUSHING TUBE MEASURES:</th>
<th>THEN:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wide Bushing</td>
<td>Narrow Bushing</td>
</tr>
<tr>
<td>5(\frac{7}{8}) to 6('') (No wear on the bushing tube)</td>
<td>3(\frac{3}{16}) ± 0.012('') (No wear on the bushing tube) (^1)</td>
</tr>
<tr>
<td>5(\frac{7}{8})" TO 5(\frac{3}{4})" (Wear of 1/8" to ¼" on the bushing tube)</td>
<td>N/A</td>
</tr>
<tr>
<td>Less than 5(\frac{3}{4})" (More than ¼" wear on the bushing tube, Worn into the weld)</td>
<td>Less than 3(\frac{3}{16})" (Worn into the weld)</td>
</tr>
<tr>
<td>Uneven wall thickness (parent material loss)</td>
<td>Continue with bushing replacement.</td>
</tr>
</tbody>
</table>

\(^1\) Any bushing tube wear into the weld is not acceptable. In this case, the axle/beam weldment (HALFTRAAX) will need to be replaced.

\(^2\) Wall thickness should be checked after BUSHING REMOVAL and prior to EVALUATING BUSHING TUBE EDGE WEAR on page 13. Any component that contains an area where corrosion removal or material wear has reduced the material thickness should be replaced. Components, where the accumulated material removal may be compromising the aggregate material thickness, should be replaced. However, cleaning of bushing tube edge, within specifications, is allowed as defined in page 14.

Table 2: Bushing tube measurement evaluation

Figure 8: Bushing tube edge wear (wide bushing)

Figure 9: Bushing tube width

See Table 2 for specifications.
BUSHING REMOVAL

With the bushing tube and bushing exposed, the bushing can now be removed with the applicable bushing tool.

1. With the beam assembly lowered, locate the bushing index mark on the bushing tube (Figure 10).

 The bushing index mark is a small dimple or indent in the side of the bushing tube and is used along with the bushing position locator to properly align the bushing within the bushing tube. When installed, the bushing voids must be vertically centered when the suspension is at ride height. By aligning the bushing position locator with the bushing index mark, proper bushing orientation is achieved.

2. Using a square and the bushing index mark as a reference point, scribe or draw a line on the outside of the bushing tube (Figure 11). This line marks the orientation of the existing bushing within the bushing tube and will be used to properly orient the replacement bushing during installation (Figure 12).

3. Apply extreme-pressure lube (provided with tool) to the threads of the hex head bolt (Figure 13).

If the index mark is not visible on the bushing tube, use the bushing position locator as a reference for drawing the bushing orientation line.
4. Apply extreme-pressure lube to the internal parts of the thrust bearing (Figure 13).

NOTICE Do not use extreme-pressure lube on the bushing. It is intended only for use on the hex head bolt, thrust bearing and thrust washers.

5. With the transition tube empty, assemble the bushing replacement tool as shown in Figure 15.

IMPORTANT: For bushing removal, ensure the tool is assembled so that the end of the transition tube with the bearing cup (wide tool) or taper (narrow tool) can be placed against the bushing tube as shown in Figure 15.

There must be two lubricated thrust washers on each side of the thrust bearing as shown in Figure 15 and Figure 16.
6. **Apply** extreme-pressure lube to external surfaces of the thrust washers (Figure 16).

7. **Insert** the hex head bolt of the partially assembled tool through the bushing until the transition tube rests squarely on the bushing tube (Figure 17).

8. **Slide** the removal spacer over the exposed hex head bolt threads on the opposite side of the bushing tube (Figure 18).

9. **(Wide bushing tool ONLY)** Configure set screws in the rear drive plate as shown in Figure 20.

NOTE: Diagonal placement of the set screws is to prevent drive plate rotation during bushing removal as shown in Figure 26 on page 13.

NOTE: Set screws enter bushing void to prevent rear drive plate rotation.

A. **Thread** the two 4-inch long set screws into diagonally opposite holes in rear drive plate (shown in Figure 20, “HVY” holes only). At least two inches of each set screw must be left exposed on the flat side of the rear drive plate.
as shown in Figure 21. If necessary, use 1/4-inch Allen wrench to turn screws.

B. If present, ensure the two 2-inch long set screws (used during installation) are screwed into unused HVY holes in the rear drive plate until they are flush with or below the flat (non-concaved) surface of the rear drive plate. These will be used later for wide bushing installation.

![Figure 22: Narrow bushing rear drive plate alignment pins](image)

NOTE: Narrow bushing tool alignment pins in the rear drive plate (Figure 22) are fixed. No other rear drive plate preparation is necessary with this tool.

10. **Thread** the rear drive plate (flat side first, Figure 21) onto the hex head bolt (Figure 23). If using the wide bushing tool, the two set screws must enter the bushing voids (open areas) to prevent the rear drive plate from turning.

11. **Hand tighten** the hex head bolt until snug.

![Figure 23: Ensure tool is square to bushing tube](image)

Figure 23: Ensure tool is square to bushing tube

12. **Ensure** tool rests squarely on the bushing tube (Figure 23).

NOTICE
The thrust bearing needs to be free to turn to prevent binding or damage to the threads of the hex head bolt during the removal process (Figure 24).

13. Using a 3/4-inch impact wrench and a 11/16-inch heavy-duty (six-point) impact socket, **remove** the bushing by turning the hex head bolt clockwise (Figure 25). Normal removal time should be four minutes or less.

IMPORTANT: Ensure the transition tube remains seated against the bushing tube during the entire bushing removal procedure. If the hex head bolt stops turning during the removal process:

A. **Reverse** the impact wrench and loosen the tool assembly.

B. **Check** the tool for damage.

C. **Reset** the rear drive plate and try again.

As a last resort, a small amount of heat may be required to break the bushing loose (Figure 26). **DO NOT OVERHEAT THE BUSHING TUBE.** Allow the bushing tube to cool before installing the new bushing.

NOTICE
The use of a one-inch impact wrench is not recommended. Damage to the threads of the hex head bolt could result.
EVALUATING BUSHING TUBE EDGE WEAR

With the beam assembly lowered and the bushing removed from the previous procedure, inspect the edges of the bushing tube.

NOTE: If not already done so, refer to Table 2 on page 8 to measure and check bushing tube length.

As described in Table 2 on page 8, it is acceptable to reuse the bushing tube if within the specifications listed in the table.

When the bushing tube wears, a slight “hook” or “tooth” of metal may develop on both inside and outside diameters of the tube (Figure 27). As the vehicle turns, the unique design of the TRI-FUNCTIONAL® Bushing allows it to elongate slightly to absorb the forces associated with road surface, load, etc. When the turn is complete and those particular forces are no longer present, the TRI-FUNCTIONAL Bushing returns to its original position. If the “hook” or “tooth” on the bushing tube is not removed, it can “bite” into the rubber TRI-FUNCTIONAL Bushing when elongated and hold or prevent it from returning to its original position, which is unacceptable. As this is repeated, the TRI-FUNCTIONAL Bushing can eventually be pulled out of the bushing tube. The rubber TRI-FUNCTIONAL Bushing may also become damaged by these irregular edges.

Also, if not repaired:
- The new bushing could bind and/or be damaged during installation.
- New bushing tube spacers will wear more rapidly than normal.

Before attempting to install a new bushing, the worn bushing tube edge must be dressed. Use a grinder to re-establish a radius on the edge of the bushing tube as shown in Figure 27 and using the following procedure.

NOTE: For HT™ Series Y-beam suspensions, the bushing tube is part of the bushing assembly (Figure 48 on page 24) and is replaced with a new bushing.
BUSHING REPLACEMENT procedure

1. **Clean** the bushing tube on the trailer suspension beam. All rust, rubber, scale and other buildup must be removed from the inside surface of the bushing tube before the replacement bushing can be installed. The bushing tube must also be cool to the touch.

IMPORTANT: Any component that contains an area where corrosion removal or material wear has reduced the material thickness should be replaced. Components, where the accumulated material removal may be compromising the aggregate material thickness, should be replaced. Refer to CONTACTING HENDRICKSON on page 2 for guidance. Refer to Table 2 on page 8.

2. **Check** the edges of the bushing tube for burrs or sharp edges. If OK, skip next step.

3. **Remove** any burrs or sharp edges with a grinding tool (Figure 27).

4. **Refer** to Table 2 on page 8 to re-measure and check bushing tube length.

 If bushing edges are smooth, with no sharp edges, and bushing tube length remains within specification; continue with new bushing installation. Otherwise, repeat the previous step as needed.

Figure 27: Bushing tube edge dressing

Section AA before grinding edges

Section AA after grinding

1/8" minimum, 3/16" maximum ID radius

1/16" minimum, 1/8" maximum OD radius

NOTE: ID radius must be smooth for bushing installation; ID & OD radius must be smooth for bushing tube spacer.
BUSSHING INSTALLATION

1. Using a square, **scribe or draw** a line on the transition tube (Figure 28). This line will be used to properly orient the bushing during installation.

2. **Liberally apply** Type “M” lubricant\(^1\) to the inside of the bushing tube, transition tube and to the outside diameter of the replacement bushing.

 NOTICE Insufficient or wrong lubricant type can cause higher friction, incomplete bushing insertion (binding) and damage to the tool.

 NOTICE **DO NOT** substitute lubricants. The only lubricant that should be used on the bushing, bushing tube and transition tube is Type “M” included in the pivot bushing replacement kit.

3. **Insert** the bushing into the transition tube (Figure 29).

4. **Align** the position locator on the bushing with the line drawn on the transition tube as shown in Figure 29.

 ![Figure 29: Inserting replacement bushing into transition tube](image)

5. **Liberally apply** extreme-pressure lube to the threads of the hex head bolt (Figure 30).

 NOTICE Do not use Type “M” lubricant on the threads of the hex head bolt, thrust bearing or washers. This may result in binding of the tool and/or damage to hex head bolt threads shown in Figure 30.

6. **Apply** extreme-pressure lube to the internal parts of the thrust bearing (Figure 31).

 NOTICE Do not use extreme-pressure lube on the bushing. It is intended only for use on the hex head bolt, thrust bearing and thrust washers.

\(^{1}\) Seagull Type “M” Code lubricant is manufactured by Clark Oil Company and is supplied with the pivot bushing replacement kit. Most or all must be applied for this procedure.
7. *Assemble* the hex head bolt, thrust washers, thrust bearing and front plate as shown in Figure 32.

A. **Wide Bushing Tool:**

 Position one *centering washer* under the front plate (Figure 19 on page 11). If required, two washers can be used.

B. **Narrow Bushing Tool:**

 Position *two centering washers* under the front plate.
NOTE: There must be two lubricated thrust washers on each side of the thrust bearing as shown in Figure 32 and Figure 33.

8. **Apply** extreme-pressure lube to external surfaces of the thrust washers (Figure 33).

9. **Narrow Bushing Tool Only:**
 If a narrow bushing is being installed, slide the plastic liner (Figure 32, B) onto the hex head bolt. This liner slips inside the bushing and helps maintain the perpendicular relationship between the replacement bushing and the hex head bolt during installation.

INSTALLING BUSHING IN BUSHING TUBE

1. **Insert** the hex head bolt of the partially assembled tool through the bushing tube.

 A. If no bushing tube wear was detected in step 2 on page 14, the assembled tool can be inserted into either side of the bushing tube.

 B. If bushing tube wear was detected in step 2 on page 14, the assembled tool must be inserted into the unworn side of the bushing tube (Figure 34) so the replacement bushing can be installed from the worn (but dressed) side of the bushing tube.

2. **Orient** the lubricated transition tube as shown in Figure 32, with bushing inserted, so the end of the transition tube with the wide tool bearing cup or narrow tool taper is toward the bushing tube.

 IMPORTANT: The transition tube guides and compresses the bushing as it enters the bushing tube. If the tool and its components are not properly oriented and assembled, the bushing and/or tool will be damaged during installation.

3. **Slide** the transition tube and bushing assembly onto the hex head bolt (Figure 32) and position it to be squarely seated against the bushing tube as shown in Figure 35.

 Figure 35: Ensure tool is square on both sides of bushing tube

 IMPORTANT: The transition tube guides and compresses the bushing as it enters the bushing tube. If the tool and its components are not properly oriented and assembled, the bushing and/or tool will be damaged during installation.

4. **Align** the line drawn on the transition tube (step 1 on page 15) with the line drawn on the bushing tube (step 2 on page 9) as shown in Figure 36.

5. **Ensure** the bushing position locator (Figure 29 on page 15) is aligned with the line on the transition tube and bushing tube (Figure 36).

 NOTE: The removal spacer required for bushing removal is not used for bushing installation.
BUSHING REPLACEMENT PROCEDURE

6. Configure the set screws in the rear drive plate as follows:

- **Wide Bushing Tool**: Thread all four set screws (two and four-inch) into the “HVY” holes in the concave side of the rear drive plate. The **two-inch set screws** should be flush with the flat side of the rear drive plate (Figure 37). The **four-inch set screws** should extend two inches beyond the flat side of the rear drive plate as shown in Figure 21 on page 11.

NOTICE: Improperly positioned set screws can jam the tool during bushing installation. Make sure set screws are positioned as stated above.

- **Narrow Bushing Tool**: The alignment pins in the rear drive plate of the narrow bushing tool (Figure 38) are fixed and cannot be adjusted.

7. Thread the rear drive plate (concave side first) onto the hex head bolt (Figure 35).

IMPORTANT: The set screws (wide bushing tool) or alignment pins (narrow bushing tool) must enter the bushing voids (open areas) to prevent the rear drive plate from turning.

8. Push the tool parts together, making sure all components are properly aligned:

- A. The front drive plate is squarely seated on one side of the bushing tube.
- B. The transition tube is squarely seated on and aligned with the other side of the bushing tube (Figure 35 and Figure 36).

9. **Hand tighten** the hex head bolt.

10. **Snug** the hex head bolt with a 11/16-inch wrench.

11. **Ensure**:

- A. The **tool** is squarely seated on each side of the bushing tube
- B. **Set screws** are in the bushing voids.
- C. **Rear drive plate** is squarely seated on the replacement bushing.
- D. **Alignment** of the line on the transition tube, the line on the bushing tube, the bushing position locator and rear drive plate alignment groove.

NOTICE: The thrust bearing (Figure 24 on page 12) needs to be free to turn to prevent binding or damage to the hex head bolt threads during the installation process.
12. **Using** a 7/4-inch impact wrench and a 1 11/16-inch heavy-duty (six-point) impact socket, **install** the bushing by turning the hex head bolt clockwise (Figure 40).

NOTE: When the bushing is approximately halfway in the bushing tube (Figure 41), the impact wrench may slow down. After a very short time, the wrench will pick up speed again. If all procedures are followed properly, the impact wrench will install the bushing in less than one minute.

13. **Continue to tighten** until the hex head bolt almost stops turning. The transition tube will fall away before the bushing is fully seated in the bushing tube and the hex head bolt stops turning (Figure 42).

CAUTION Do not allow the transition tube to fall to the floor. Transition tube damage or personal injury could result.

14. With the bushing installed, **verify**:

A. The bushing position locator is aligned with the bushing index mark (Figure 10 on page 9 or with the line drawn on the outside of the bushing tube (Figure 12 on page 9).
Bushing Replacement Procedure

Suspension Reassembly

After a new bushing is installed, the suspension can be reassembled. Reference Figure 4 and Figure 6 on page 6.

CAUTION Failure to follow these pivot connection assembly procedures and to properly torque the pivot connection fasteners could result in a failed pivot connection and damage to the axle, suspension or trailer.

1. Place and hold new bushing tube spacers over bushing tubes. Refer to Hendrickson literature number L750 Bushing Tube Spacer Inspection/Replacement Procedure.

NOTE: Tape can be used to hold spacers in place during beam installation into frame bracket.

NOTICE If more bushing tube spacers than what is recommended are added, the TRI-FUNCTIONAL® Bushing will not have enough room within the frame bracket to function properly and severe damage to the suspension could result.

2. Using a jack, carefully raise the suspension beam into place in the frame bracket.

CAUTION DO NOT APPLY anti-seize compound or additional lubricant to pivot connection hardware. A dry lubricant coating has been applied to the threads of the pivot connection bolt and nut. Do not allow undercoating, paint, surface coatings, or any other commonly used compounds to contact the threads of the pivot connection fasteners. These compounds can act like a lubricant, reducing the friction between the threads of the nut and bolt. This can lead to overtightened fasteners, unpredictable pivot connection clamp loads and unreliable axle alignments. Threads should be clean, dry and free of contamination, as supplied by Hendrickson.

CAUTION DO NOT apply undercoating, paint or other surface coating to the suspension and frame brackets until after completing the alignment.

Figure 43: Bushing inner metal centered in bushing tube

B. The bushing inner metal is centered in the bushing tube.

15. **Disassemble, clean and store** the tool in a clean, dry place.
Bushing Replacement Procedure

IMPORTANT: New pivot connection fasteners must be used for pivot connection reassembly. **DO NOT** tack weld the pivot bolt to the alignment collar.

3. **Reassemble** the pivot connection using one of the following procedures:

A. **QUIK-ALIGN® Style Pivot Connection** (Figure 4): **Reassemble** and align pivot connection as follows:

 NOTE: This procedure applies to all QUIK-ALIGN style pivot connections, except Y-beam QUIK-ALIGN Style Pivot Connection (Figure 44 on page x). Reassemble as follows: on page 25.

 i. **Place** the concentric alignment collar over the new shear-type pivot bolt.

 ii. **Insert** pivot bolt through inboard side of frame bracket alignment slots, spacers and bushing toward the outboard side till the concentric collar rests squarely against the inboard side of the frame bracket.

 iii. **Slide** the eccentric alignment collar over the threaded end of the pivot bolt on the outboard side.

 iv. **Thread** the nut onto the threaded end of the pivot bolt until snug against the eccentric alignment collar.

 IMPORTANT: The above steps are done in preparation for alignment. Be sure the alignment collars pass through the alignment slots and against the frame bracket (Figure 4 on page 5). The pivot bolt will be fully tightened after suspension alignment as part of L579.

 v. **Continue** the QUIK-ALIGN style pivot connection reassembly and alignment as described in Hendrickson literature number L579 Alignment Procedure.

B. **Welded Collar Style Pivot Connection** (Figure 6): **Reassemble** the welded collar style pivot connection as follows:

 NOTE: For Y-beam welded collar pivot connection installation, refer to Y-BEAM PIVOT CONNECTION REASSEMBLY on page 24.

 i. **Insert** a new 1 ½-inch heavy hex cap screw from the inboard side of the frame bracket.

 ii. **Thread** the nut onto the cap screw and tighten to 800±25 ft. lbs. (1085±30 N-m) of torque.

 iii. **Tack weld** the nut to the cap screw threads.

4. **Restore** trailer to normal operating condition when complete.

Refer to Hendrickson literature number B31 Torque Specifications available at www.Hendrickson-intl.com/TrailerLit.
HT™ SERIES Y-BEAM BUSHING REPLACEMENT

HT™ Series Y-beam suspensions differ from other suspension beams because they do not require a frame bracket. The fork or “Y” of the beam connects directly to the trailer frame using the bushing tube sleeve (Figure 45 and Figure 44, item 1).

Removal and installation of the bushing assembly (Figure 45 and Figure 44, item 2) does not require the bushing removal tool.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>WELDED</th>
<th>QUIK-ALIGN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bushing tube sleeve</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>2</td>
<td>Bushing assembly</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>3</td>
<td>Bushing tube spacers (2 ea)</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>4</td>
<td>Welded alignment collars (2 ea)</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Eccentric alignment collar</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>6</td>
<td>Concentric alignment collar</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>7</td>
<td>Hex cap screw (Pivot bolt) and nut</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>8</td>
<td>Delrin® liner</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Y-beam pivot connection hardware list

Figure 44: QUIK-ALIGN® pivot connection hardware

Figure 45: Welded collar pivot connection hardware
Y-BEAM PIVOT CONNECTION DISASSEMBLY

Removal of the pivot connection hardware for both QUIK-ALIGN alignment systems is similar to suspensions with frame brackets. For the recommended procedure, refer to QUIK-ALIGN on page 5. Reference Figure 44 and Figure 46.

1. Use a jack or other means to support the suspension beam while removing pivot connection hardware.

2. Cut or grind the Huck fastener from the Huck bolt (or the nut from the cap screw).

3. Remove and discard the bolt and nut.

IMPORTANT: Removal of Y-beam parent material must be avoided.

4. Carefully grind or cut the welds securing the inboard and outboard alignment collars to the Y-beam for both bushing assemblies.

5. Discard alignment collars.

Y-BEAM BUSHING ASSEMBLY REMOVAL

The bushing assembly (Figure 45 and Figure 44, item 2) should be held in position by four half-inch welds (Figure 49) on each end. To remove the bushing assembly:

1. Using the jack, carefully lower the suspension beam assembly away from the trailer frame and bushing tube sleeve to expose the bushings.

2. Discard the bushing tube spacers.

NOTE: If within the warranty time period, the following is recommended at this time as defined in Hendrickson literature number L583 Comprehensive Warranty Statement:

- CONTACTING HENDRICKSON prior to service.
- SEND photos to HTTS@hendrickson-intl.com for evaluation.

3. Grind away the four welds on each end of the bushing assembly.

NOTE: From a previous bushing replacement, this weld may be 360°. The weld still needs to be removed to replace the bushing assembly.

4. Slide out and remove original bushing assembly.

NOTE: If within warranty, the original bushing assembly must be returned to Hendrickson for further warranty consideration.

5. Check the edge of the bushing tube sleeve.

6. Clean as needed prior to installing new bushing assembly.
BUSHING REPLACEMENT PROCEDURE

Y-Beam Bushing Assembly Installation

This procedure is the same for both QUIK-ALIGN® and welded collar bushing assemblies (Figure 48).

![Figure 48: Y-beam bushing assemblies](image)

Figure 48: Y-beam bushing assemblies

1. **Insert** the new bushing assembly (Figure 48) into the bushing tube sleeve (Figure 49).
2. **Rotate** bushing assemblies so bushing voids are positioned vertically as shown in Figure 49.
3. **Center** bushing assembly in the bushing tube sleeve.
4. **Tack weld** both ends into place.
5. **Weld** the bushing assembly to the bushing tube sleeve, (Figure 49), with four half-inch (12.7 mm) welds. Refer to Hendrickson literature number L64 Welding Procedures for weld parameters.

NOTICE Allow adequate cooling between welds to prevent excessive heating of the TRI-FUNCTIONAL® Bushing!

Y-Beam Pivot Connection Reassembly

NOTICE Failure to follow these procedures and/or properly torque the pivot bolts at this time can result in a failed pivot connection and a loss of warranty coverage.

1. **Place and hold** new bushing tube spacers over bushing tube sleeves. Refer to Hendrickson literature number L750 Bushing Tube Spacer Inspection/Replacement Procedure for details.

NOTE: Tape can be used to hold spacers in place during Y-beam installation into trailer frame.

2. **Lift and position** Y-beam subassembly relative to vehicle frame rail as indicated in Figure 44 or Figure 45.

3. **Reassemble** the pivot connection using one of the following procedures:

CAUTION DO NOT APPLY anti-seize compound or additional lubricant to pivot connection hardware. A dry lubricant coating has been applied to the threads of the pivot connection bolt and nut. Do not allow undercoating, paint, surface coatings, or any other commonly used compounds to contact the threads of the pivot connection fasteners. These compounds can act like a lubricant, reducing the friction between the threads of the nut and bolt. This can lead to overtightened fasteners, unpredictable pivot connection clamp loads and unreliable axle alignments. Threads should be clean, dry and free of contamination, as supplied by Hendrickson.

IMPORTANT: New pivot connection fasteners must be used for pivot connection reassembly.
A. **QUIK-ALIGN Style Pivot Connection** (Figure 44 on page 22). **Reassemble** as follows:

i. **Place** the eccentric alignment collar onto the new shear-type pivot bolt.

ii. Working from the outboard side of the trailer, **insert** fastener through Y-beam’s alignment slots, spacers and bushing assembly.

iii. **Slide** the concentric alignment collar over the threaded end of the pivot bolt on the inboard side.

iv. **Thread** the nut onto the threaded end of the pivot bolt until snug against the concentric alignment collar.

IMPORTANT: The above steps are done in preparation for alignment. Be sure the alignment collars pass through the alignment slots and against the Y-beam (Figure 47). The pivot bolt will be fully tightened after suspension alignment as part of L579.

B. **Welded Collar Style Pivot Connection**

Welded collars were removed and discarded during pivot connection disassembly. New collars are required for this procedure. Refer to Figure 6 on page 6, Figure 45 on page 22 and Figure 47 on page 23.

i. **Insert** provided Delrin® liner (Table 3, item 8) through the alignment slot and bushing inner metal (Figure 45 and Figure 47).

ii. **Place** a new alignment collar onto a new 1 1/8-inch heavy hex cap screw.

iii. Working from the outboard side of the trailer, **insert** fastener, with collar, through the Y-beam’s alignment slots, spacers and bushing assembly (toward center of trailer).

iv. **Place** new inner alignment collar onto the threaded end of the cap screw.

v. **Thread** the new 1 1/8-inch lock nut onto the cap screw and tighten to 800±25 ft. lbs. (1085±30 N·m) of torque.

vi. **Tack weld** the nut to the cap screw threads.

4. The HT Y-beam suspension/axle is now ready for alignment. Complete the pivot connection assembly according to alignment procedures listed in Hendrickson literature number L579.

5. **Restore** trailer to normal operating condition when complete.
Actual product performance may vary depending upon vehicle configuration, operation, service and other factors.