TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Product Description</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Important Safety Notice</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Parts Lists</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Special Tools</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>Towing Procedures</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>Preventive Maintenance</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Component Inspection</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Lubrication Intervals</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Kingpin Lubrication</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Tie Rod End Lubrication</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Tie Rod End Inspection</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Clamp Group Re-Torque Interval</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Tire Inspection</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Shock Absorber Inspection</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Thrust Washer Inspection (If equipped)</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Axle Wrap Liner Inspection (If equipped)</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Kingpin Bushing Inspection</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Steering Knuckle Inspection</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>Alignment & Adjustments</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Alignment Definitions</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Inspection Prior to Alignment</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Front Wheel Alignment</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Ride Height Verification</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Dual Height Control Valves</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Single Height Control Valve</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Steering Stop</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Toe Setting</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Spring Eye Re-Torque</td>
<td>47</td>
</tr>
<tr>
<td>9</td>
<td>Component Replacement</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Fasteners</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Height Control Valve</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Air Spring</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Rubber Axle Stop</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Front Leaf Spring Hanger</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Shackles Bracket</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Thrust Washers (If equipped)</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Leaf Spring</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Front And Rear Leaf Spring Eye Bushings</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Shock Absorber</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Bottom Axle Wrap (If equipped)</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Top Axle Wrap in Chassis (If equipped)</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Front Axle Assembly</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>STEERTEK NXT Axle Removal</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>STEERTEK NXT Axle (Removed from Chassis)</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Front Axle assembly</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>STEERTEK Axle Removal</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>STEERTEK Axle (Removed from Chassis)</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Steering Knuckle Disassembly</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Kingpin Measurement and Preparation</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Kingpin Bushing Removal</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Steering Knuckle Bore Measurement</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Kingpin Bushing Installation</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Kingpin Bushing Reaming</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Kingpin Seal Installation</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Steering Knuckle Assembly</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Tie Rod End and Cross Tube</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Single to Dual Height Control Valve Conversion</td>
<td>86</td>
</tr>
<tr>
<td>10</td>
<td>Plumbing Diagrams</td>
<td>90</td>
</tr>
<tr>
<td>11</td>
<td>Troubleshooting Guide</td>
<td>92</td>
</tr>
<tr>
<td>12</td>
<td>Torque Specifications</td>
<td>94</td>
</tr>
<tr>
<td>13</td>
<td>Front Wheel Alignment Specifications</td>
<td>98</td>
</tr>
<tr>
<td>14</td>
<td>Reference Material</td>
<td>99</td>
</tr>
</tbody>
</table>
SECTION 1
Introduction

This publication is intended to acquaint and assist maintenance personnel in the preventive maintenance, service, repair, and rebuild for the following Hendrickson equipment as installed on applicable Volvo Trucks North America vehicles:

- AIRTEK® — An Integrated front air suspension with the STEERTEK NXT axle.
- STEERTEK NXT — A durable, lightweight, fabricated steer axle assembly.

NOTE

Use only Hendrickson Genuine Parts for servicing this suspension system. It is important to read and understand the entire Technical Procedure publication prior to performing any maintenance, service, repair, or rebuild of this product. The information in this publication contains parts lists, safety information, product specifications, features, proper maintenance, service, repair and rebuild instructions for the AIRTEK Suspension and the STEERTEK NXT axle. Hendrickson reserves the right to make changes and improvements to its products and publications at any time. Contact Hendrickson Tech Services for information on the latest version of this manual at 1-866-755-5968 (toll-free U.S. and Canada), 630-910-2800 (outside U.S. and Canada) or e-mail: techservices@hendrickson-intl.com.

The latest revision of this publication is also available online at www.hendrickson-intl.com.

SECTION 2
Product Description

FIGURE 2-1

AIRTEK SUSPENSION — Capacity: 12,000, 12,500, 13,200, and 14,600 pounds
Suspension Weight: 238 lbs. for 12,000/12,500 pounds capacity and 246 pounds for 13,200/14,600 pounds capacity. Not including the axle, weight may vary with ride height or with frame height.

STEERTEK NXT — Axle Weight: 328 pounds for 12,000/12,500 pounds capacity and 357 pounds for 13,200/14,600 pounds capacity. Weight may vary with ride height.
Axle Rating: 12,000, 12,500, 13,200, and 14,600 pounds
Axle Drop: 4.25"
AIRTEK® — Winner of the 2001 Automotive News and Cap Gemini Ernst & Young PACE Award for Product Innovation. AIRTEK is an integrated front air suspension and fabricated steer axle that work together to form an integrated torsion system. This lightweight system provides enhanced driver comfort and is ideal for a variety of applications including on-highway line and bulk haul operations. Utilizing a system approach, Hendrickson has engineered and optimized the following components to form a system delivering superior ride, stability, and handling characteristics with reduced weight and maintenance.

Air Springs — Exclusive to Hendrickson, the lightweight air springs deliver an extremely soft ride. The air springs are engineered to support 80% of the vertical load while providing a very low spring rate. The quick “snap” design (12,000 and 12,500 pound capacity), bolt on design (13,200 & 14,600 pound capacity) and “push-to-connect” air supply design (all models) also provide fast and easy removal and installation.

Leaf Spring Assembly — With its innovative design, the leaf spring provides superior stability, performance and a soft ride. The patented leaf spring shares loads with the air spring. Durable rubber front and rear bushings are greaseless and only require periodic inspections.

Shock Absorbers — AIRTEK utilizes premium shocks that have been tested and tuned specifically for the AIRTEK system.

Shackle Brackets — Optimized design delivers weight reduction and proven durability.

STEERTEK NXT — Integrated into the AIRTEK system, the box-shaped design provides a stiffer axle and resists torsional, longitudinal, and vertical loads more effectively than traditional I-beam axles. Together with the front limbs of the leaf springs, the fabricated axle beam forms a torsion system, enhancing roll stability characteristics and improving handling.

Axle clamp group — The clamp group consists of the top pad, M20 bolts, washers and locknuts.

Adjustable tie rod — To help maximize tire life, the tie rod easily adjusts toe-in/out.

Steering knuckles — The steering and tie rod arms are integrated for increased strength and reduced weight. The unique steering knuckle packaging delivers up to 55° wheel cut. The two piece knuckle design makes servicing the kingpin bushings easier by eliminating the need to remove the kingpins.
TECHNICAL NOTES

1. AIRTEK is approved for 100% on-highway usage with up to 15% operation on unpaved secondary roads. All applications must comply with applicable Hendrickson specifications and must also be approved by the respective vehicle manufacturer with the vehicle in its original, as-built configuration. Contact Hendrickson and the respective vehicle manufacturer for approval of additional applications. This system has 12,000, 12,500, 13,200, and 14,600 pound capacities. System capacity represents maximum loads on tires at ground level.

2. The STEERTEK NXT axle is available with 70.87" Kingpin Intersections (KPI).

3. The STEERTEK NXT axle offers 4.25" axle beam drop height. Axle beam drop is measured from the kingpin intersection to the top of the axle beam.

4. AIRTEK suspension weight includes shackle bracket assemblies, main springs, bushings, air springs and air spring bracket, shocks, upper shock brackets and axle clamp group.

5. STEERTEK NXT axle weight is based on a 4.25" drop height and a 70.87" KPI. Axle weight includes, axle beam with axle spring seats, knuckle/steering arm assemblies and tie rod assemblies.

6. AIRTEK is integral to and available exclusively with the STEERTEK NXT axle. This system is anti-lock braking system (ABS) ready. STEERTEK NXT is compatible with most industry standard wheel ends and brakes; contact OEM for more information.

7. Suspension capacity can be determined two different ways.
 a. Approximate suspension capacity is indicated by the third digit in the axle part number, which can be found on the product identification tag located on the center front side of the axle. The axle part number is an eight-digit number in the form of ABCDE-XYZ. If the third digit (position C) is a “2”, the suspension is rated at 12,000 or 12,500 pounds. A “4” indicates a rating of 13,200 or 14,600 pounds, see Figure 2-2.
 b. Approximate suspension capacity can also be determined by the original air spring part number, which is molded into the flexible rubber member of the air spring. 66349-002L indicates a 12,000 or 12,500 pounds rating, and 60716-002 indicates a 13,200 or 14,600 pounds rating.

FIGURE 2-2 Front view of the axle showing approximate location of Product Identification.

8. Frame Rail Height — The AIRTEK suspension is available with two different frame rail heights, 266 mm and 300 mm. To determine the vehicle frame rail height, measure the bottom to the top of the frame rail flange.
SECTION 3
Important Safety Notice

Proper maintenance, service, and repair is important for the reliable operation of the suspension. The procedures recommended by Hendrickson and described in this technical publication are methods of performing such maintenance, service and repair.

The warnings and cautions should be read carefully to help prevent personal injury and to assure that proper methods are used. Improper maintenance, service or repair may damage the vehicle, cause personal injury, render it unsafe in operation, or void manufacturer's warranty.

Failure to follow the safety precautions in this manual can result in personal injury and/or property damage. Carefully read and understand all safety related information within this publication, on all decals and in all such materials provided by the vehicle manufacturer before conducting any maintenance, service or repair.

■ EXPLANATION OF SIGNAL WORDS

Hazard “Signal Words” (Danger-Warning-Caution) appear in various locations throughout this publication. Information accented by one of these signal words must be observed to help minimize the risk of personal injury to service personnel, or possibility of improper service methods which may damage the vehicle or render it unsafe.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

Additional Notes or Service Hints are utilized to emphasize areas of procedural importance and provide suggestions for ease of repair. The following definitions indicate the use of these signal words as they appear throughout the publication.

DANGER
INDICATES AN IMMINENTLY HAZARDOUS SITUATION WHICH, IF NOT AVOIDED, WILL RESULT IN SERIOUS INJURY OR DEATH.

WARNING
INDICATES A POTENTIAL HAZARDOUS SITUATION WHICH, IF NOT AVOIDED, COULD RESULT IN SERIOUS INJURY OR DEATH.

CAUTION
INDICATES A POTENTIAL HAZARDOUS SITUATION WHICH, IF NOT AVOIDED, MAY RESULT IN MINOR OR MODERATE INJURY, OR PROPERTY DAMAGE.

NOTE
An operating procedure, practice condition, etc. which is essential to emphasize.

SERVICE HINT
A helpful suggestion that will make the servicing being performed a little easier and/or faster. Also note that particular service operations may require the use of special tools designed for specific purposes. These special tools can be found in the Special Tools Section of this publication.

The torque symbol alerts you to tighten fasteners to a specified torque value. Refer to Torque Specifications Section of this publication.
SAFETY PRECAUTIONS

FASTENERS

WARNING

DISCARD USED FASTENERS. ALWAYS USE NEW FASTENERS TO COMPLETE A REPAIR. FAILURE TO DO SO COULD RESULT IN FAILURE OF THE PART, OR MATING COMPONENTS, LOSS OF VEHICLE CONTROL, PERSONAL INJURY, OR PROPERTY DAMAGE.

LOOSE OR OVER TORQUED FASTENERS CAN CAUSE COMPONENT DAMAGE, LOSS OF VEHICLE CONTROL, PROPERTY DAMAGE, OR SEVERE PERSONAL INJURY. MAINTAIN CORRECT TORQUE VALUE AT ALL TIMES. CHECK TORQUE VALUES ON A REGULAR BASIS AS SPECIFIED, USING A TORQUE WRENCH THAT IS REGULARLY CALIBRATED. TORQUE VALUES SPECIFIED IN THIS TECHNICAL PUBLICATION ARE FOR HENDRICKSON SUPPLIED FASTENERS ONLY. IF NON HENDRICKSON FASTENERS ARE USED, FOLLOW TORQUE SPECIFICATION LISTED IN THE VEHICLE MANUFACTURER’S SERVICE MANUAL.

AIR SPRINGS

WARNING

AIR SPRING ASSEMBLIES MUST BE DEFLATED PRIOR TO LOOSENING ANY CLAMP GROUP HARDWARE. UNRESTRICTED AIR SPRING ASSEMBLIES CAN VIOLENTLY SHIFT. DO NOT INFLATE AIR SPRING ASSEMBLIES WHEN THEY ARE UNRESTRICTED. AIR SPRING ASSEMBLIES MUST BE RESTRICTED BY SUSPENSION OR OTHER ADEQUATE STRUCTURE. DO NOT INFLATE BEYOND PRESSURES RECOMMENDED BY AIR SPRING MANUFACTURER, CONTACT HENDRICKSON TECHNICAL SERVICES FOR DETAILS. IMPROPER USE OR OVER INFLATION MAY CAUSE AIR SPRING ASSEMBLIES TO BURST, CAUSING PROPERTY DAMAGE AND/OR SEVERE PERSONAL INJURY.

WHEN SERVICING THE VEHICLE OR ATTACHING AN AIR SPRING AND THE VEHICLE IS ON THE GROUND, PRIOR TO AIRING THE SUSPENSION SYSTEM MAKE CERTAIN THE AIR SPRING LOCATOR IS INDEXED INTO THE UPPER AIR SPRING BRACKET PROPERLY, AND THE AIR SPRING IS FULLY SEATED ON THE TOP PAD. FAILURE TO FOLLOW THESE INSTRUCTIONS CAN RESULT IN PREMATURE AIR SPRING FAILURE, CAUSE PERSONAL INJURY, OR PROPERTY DAMAGE.

PRIOR TO AND DURING DEFLATION AND INFLATION OF THE FRONT AIR SUSPENSION SYSTEM, ENSURE THAT ALL PERSONNEL AND EQUIPMENT ARE CLEAR FROM UNDER THE VEHICLE AND AROUND THE SERVICE AREA, FAILURE TO DO SO CAN CAUSE SERIOUS PERSONAL INJURY, DEATH, OR PROPERTY DAMAGE.

LOAD CAPACITY

ADHERE TO THE PUBLISHED CAPACITY RATINGS FOR THE SUSPENSIONS. ADD-ON AXLE ATTACHMENTS AND OTHER LOAD TRANSFERRING DEVICES (I.E. SLIDING FIFTH WHEELS) CAN INCREASE THE SUSPENSION LOAD ABOVE THE RATED AND APPROVED CAPACITIES WHICH CAN RESULT IN FAILURE AND LOSS OF VEHICLE CONTROL, POSSIBLY CAUSING PERSONAL INJURY OR PROPERTY DAMAGE.

SHOCK ABSORBERS

THE SHOCK ABSORBERS ARE THE REBOUND TRAVEL STOPS FOR THE AIR SPRINGS. ANYTIME THE FRONT AXLE ON AN AIRTEK SUSPENSION IS SUSPENDED IT IS MANDATORY THAT THE SHOCK ABSORBERS REMAIN CONNECTED. FAILURE TO DO SO CAN CAUSE THE AIR SPRINGS TO EXCEED THEIR MAXIMUM LENGTH, POSSIBLY CAUSING THE AIR SPRINGS TO SEPARATE FROM THE PISTON, OR CAUSE A REVERSE ARCH IN THE STEEL LEAF SPRINGS, POSSIBLY RESULTING IN PREMATURE STEEL LEAF SPRING FAILURE.

REPAIR OR RECONDITIONING

THE REPAIR OR RECONDITIONING OF SUSPENSION OR AXLE COMPONENTS IS NOT ALLOWED AS SHOWN ON LABEL IN FIGURE 3-1. ANY SUSPENSION OR AXLE COMPONENTS FOUND TO BE DAMAGED OR OUT OF SPECIFICATIONS MUST BE REPLACED. ALL MAJOR HENDRICKSON COMPONENTS ARE HEAT TREATED AND TEMPERED. AIRTEK COMPONENTS CANNOT BE BENT, WELDED, HEATED, OR REPAIRED WITHOUT REDUCING THE STRENGTH OR LIFE OF THE COMPONENT. FAILURE TO FOLLOW THESE GUIDELINES CAN CAUSE LOSS OF VEHICLE CONTROL, POSSIBLE PERSONAL INJURY, DEATH, OR PROPERTY DAMAGE AND WILL VOID APPLICABLE WARRANTIES.
WARNING

AXLE CAMBER

Unauthorized welding or modifications can cause cracks or other axle structural damage and result in loss of vehicle control, severe personal injury or death. Do not bend, weld or modify axle without authorization from Hendrickson Truck Suspension Systems.

AXLE CAMBER IS NOT ADJUSTABLE. Do not change the axle camber angle or bend the axle beam, see Figure 3-1. Bending the axle beam to change the camber angle can damage the axle and reduce axle strength, will void Hendrickson’s warranty and can cause loss of vehicle control, possibly causing personal injury or property damage.

FIGURE 3-1 Replace any safety decals that are faded, torn, missing, illegible, or otherwise damaged. Contact Hendrickson to order replacement labels.

WARNING

STEERTEK NXT AXLE SPRING SEATS

Unauthorized tampering of integrated axle spring seats can cause component and structural damage and result in loss of vehicle control, severe personal injury or death, property damage, and will void warranty. Do not remove, modify or replace integrated axle spring seat or fasteners. See Figure 3-1.

WARNING

STEERTEK NXT AXLE KINGPINS

SteerTek NXT / SteerTek is a unique axle, in that the kingpin is cryogenically installed in the axle. The kingpin is a non-replaceable component of the axle assembly. Do not try to remove the kingpin. If the kingpin or adjacent mating surface show signs of damage or movement, do not operate the vehicle and immediately contact the Hendrickson Tech Services Department.
WARNING

IMPROPER JACKING METHOD

IMPROPER JACKING METHOD CAN CAUSE STRUCTURAL DAMAGE AND RESULT IN LOSS OF VEHICLE CONTROL, SEVERE PERSONAL INJURY OR DEATH. DO NOT USE AXLE BEAM OUTBOARD OF AXLE SPRING SEATS. REFER TO VEHICLE MANUFACTURER FOR PROPER JACKING INSTRUCTIONS.

WARNING

DAMAGED AXLE COMPONENTS

IF A VEHICLE EQUIPPED WITH A STEERTEK NXT / STEERTEK AXLE IS INVOLVED IN A CRASH, THE AXLE STEER KNUCKLES MUST BE DISASSEMBLED AND A THOROUGH INSPECTION OF THE AXLE MUST BE PERFORMED NOTING THE CONDITION OF THE AXLE BEAM, KINGPINS, AND KNUCKLE ASSEMBLIES, INCLUDING THE AREAS OF AXLE TO KINGPIN INTERFACE, FOR ANY DAMAGE, GAPS, KINGPIN MOVEMENT OR PLAY. IF ANY COMPONENT APPEARS DAMAGED, OR THE KINGPINS APPEAR TO CONTAIN ANY DAMAGE, GAPS, MOVEMENT OR PLAY, THE COMPLETE AXLE ASSEMBLY MUST BE REPLACED.

IN ADDITION, IN THE EVENT A CRASH RESULTS IN EXCESSIVE SIDE LOAD DAMAGE TO ADJACENT PARTS, SUCH AS A BENT WHEEL, HUB, OR SPINDLE, IT IS STRONGLY RECOMMENDED TO REPLACE SUCH ADJACENT PARTS AND THE COMPLETE AXLE ASSEMBLY.

CONTACT HENDRICKSON TECHNICAL SERVICES WITH ANY QUESTIONS. FAILURE TO REPLACE ANY DAMAGED COMPONENTS CAN CAUSE LOSS OF VEHICLE CONTROL, POSSIBLE PERSONAL INJURY, DEATH, OR PROPERTY DAMAGE AND WILL VOID ANY APPLICABLE WARRANTIES.

WARNING

MODIFYING COMPONENTS

DO NOT MODIFY OR REWORK PARTS WITHOUT AUTHORIZATION FROM HENDRICKSON. DO NOT SUBSTITUTE REPLACEMENT COMPONENTS NOT AUTHORIZED BY HENDRICKSON. USE OF MODIFIED, REWORKED, SUBSTITUTE OR REPLACEMENT PARTS NOT AUTHORIZED BY HENDRICKSON MAY NOT MEET HENDRICKSON’S SPECIFICATIONS, AND CAN RESULT IN FAILURE OF THE PART, LOSS OF VEHICLE CONTROL, POSSIBLE PERSONAL INJURY OR PROPERTY DAMAGE, AND WILL VOID ANY APPLICABLE WARRANTIES. USE ONLY HENDRICKSON AUTHORIZED REPLACEMENT PARTS.

WARNING

OFF ROADWAY TOWING

WHEN A VEHICLE IS DISABLED AND EQUIPPED WITH A STEERTEK NXT / STEERTEK AXLE, CARE MUST BE TAKEN TO ENSURE THERE IS NO DAMAGE TO THE SUSPENSION OR AXLE WHEN TOWING THE VEHICLE. THE USE OF TOW STRAPS ARE NECESSARY TO TOW A DISABLED VEHICLE INTO A REPAIR FACILITY PARKING LOT INTO THE SHOP BAY. THE TOW STRAPS SHOULD BE CONNECTED TO THE TOW HOOKS PROVIDED BY THE VEHICLE MANUFACTURER AT THE FRONT OF THE BUMPER. IF THE USE OF TOW HOOKS IS NOT AN OPTION, THEN TOW STRAPS MAY BE WRAPPED AROUND THE FRONT STEERTEK NXT / STEERTEK AXLE, SEE FIGURE 3-2, IN A MANNER THAT IS ACCEPTABLE FOR TOWING THE VEHICLE FROM A REPAIR FACILITY PARKING LOT INTO THE SHOP BAY. DO NOT USE A TOW CHAIN AROUND THE FRONT STEERTEK NXT / STEERTEK AXLE TO TOW THE VEHICLE, DOING SO WILL DAMAGE THE AXLE AND VOID ANY APPLICABLE WARRANTY, SEE FIGURE 3-2. FOR DETAILED INSTRUCTIONS FOR ON-HIGHWAY TOWING, SEE TOWING PROCEDURE SECTION OF THIS PUBLICATION.

FIGURE 3-2

OFF-ROADWAY TOWING

ACCEPTABLE

- DO USE Nylon Straps

UNACCEPTABLE

- DO NOT Use Chains
PERSONAL PROTECTIVE EQUIPMENT
ALWAYS WEAR PROPER EYE PROTECTION AND OTHER REQUIRED PERSONAL PROTECTIVE EQUIPMENT TO HELP PREVENT PERSONAL INJURY WHEN PERFORMING VEHICLE MAINTENANCE, REPAIR OR SERVICE.

PROCEDURES AND TOOLS
A MECHANIC USING A SERVICE PROCEDURE OR TOOL WHICH HAS NOT BEEN RECOMMENDED BY HENDRICKSON MUST FIRST SATISFY HIMSELF THAT NEITHER HIS SAFETY NOR THE VEHICLE’S SAFETY WILL BE JEOPARDIZED BY THE METHOD OR TOOL SELECTED. INDIVIDUALS DEVIATING IN ANY MANNER FROM THE INSTRUCTIONS PROVIDED ASSUME ALL RISKS OF POTENTIAL PERSONAL INJURY OR DAMAGE TO EQUIPMENT INVOLVED.

TORCH/WELDING
DO NOT USE A CUTTING TORCH TO REMOVE ANY FASTENERS. THE USE OF HEAT ON SUSPENSION COMPONENTS WILL ADVERSELY AFFECT THE STRENGTH OF THESE PARTS. A COMPONENT DAMAGED IN THIS MANNER CAN RESULT IN THE LOSS OF VEHICLE CONTROL AND POSSIBLE PERSONAL INJURY OR PROPERTY DAMAGE.

EXERCISE EXTREME CARE WHEN HANDLING OR PERFORMING MAINTENANCE IN THE AREA OF THE SPRING ASSEMBLY AND AXLE. DO NOT CONNECT ARC WELDING GROUND LINE TO THE SPRING ASSEMBLY OR AXLE. DO NOT STRIKE AN ARC WITH THE ELECTRODE ON THE SPRING ASSEMBLY OR AXLE. DO NOT USE HEAT NEAR THE SPRING ASSEMBLY OR AXLE. SUCH IMPROPER ACTIONS CAN DAMAGE THE SPRING ASSEMBLY OR THE AXLE, AND CAN CAUSE LOSS OF VEHICLE CONTROL AND POSSIBLE PERSONAL INJURY OR PROPERTY DAMAGE.

SUPPORT THE VEHICLE PRIOR TO SERVICING
PLACE THE VEHICLE ON A LEVEL FLOOR AND CHOCK THE WHEELS TO HELP PREVENT THE VEHICLE FROM MOVING. NEVER WORK UNDER A RAISED VEHICLE SUPPORTED BY ONLY A FLOOR JACK. ALWAYS SUPPORT A RAISED VEHICLE WITH SAFETY STANDS. BLOCK THE WHEELS AND MAKE SURE THE UNIT WILL NOT ROLL BEFORE RELEASING BRAKES. A JACK CAN SLIP OR FALL OVER. SERIOUS PERSONAL INJURY CAN RESULT.

PARTS CLEANING
SOLVENT CLEANERS CAN BE FLAMMABLE, POISONOUS AND CAUSE BURNS. TO HELP AVOID SERIOUS PERSONAL INJURY, CAREFULLY FOLLOW THE MANUFACTURER’S PRODUCT INSTRUCTIONS AND GUIDELINES AND THE FOLLOWING PROCEDURES:
1. WEAR PROPER EYE PROTECTION.
2. WEAR CLOTHING THAT PROTECTS YOUR SKIN.
3. WORK IN A WELL-VENTILATED AREA.
4. DO NOT USE GASOLINE, OR SOLVENTS THAT CONTAIN GASOLINE. GASOLINE CAN EXPLODE.
5. HOT SOLUTION TANKS OR ALKALINE SOLUTIONS MUST BE USED CORRECTLY. FOLLOW THE MANUFACTURER’S RECOMMENDED INSTRUCTIONS AND GUIDELINES CAREFULLY TO HELP PREVENT PERSONAL ACCIDENT OR INJURY.

DO NOT USE HOT SOLUTION TANKS OR WATER AND ALKALINE SOLUTIONS TO CLEAN GROUND OR POLISHED PARTS. DOING SO WILL CAUSE DAMAGE TO THE PARTS AND VOID ANY APPLICABLE WARRANTY.
SECTION 4
Parts Lists

- Vehicles built with STEERTEK NXT axle after July, 2011
<table>
<thead>
<tr>
<th>KEY NO.</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>NO.REQ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>66349-002L</td>
<td>Air Spring</td>
<td>2</td>
</tr>
<tr>
<td>a</td>
<td>60716-002L</td>
<td>12K/12.5K</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>13.2K/14.6K</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>60757-000</td>
<td>Air Spring Bracket</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>60976-000</td>
<td>12K/12.5K 300 Rail</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>60738-001</td>
<td>13.2K/14.6K 266 Rail</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>60738-002</td>
<td>13.2K/14.6K 300 Rail</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>64838-003L</td>
<td>Shock Absorber</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>59423-008</td>
<td>Upper Shock Bracket</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>53216-000</td>
<td>Leaf Spring Assembly with Bushings</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Includes Key No. 6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>**Steel Galvanized Liner</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>*Front Spring Hanger</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>64486-000</td>
<td>Inboard Spring Adapter</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>58258-009</td>
<td>M20 x 2.5-6G 230 mm Hex Bolt</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>LH Rear Shackle Bracket Service Kit, One Side</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Includes Key Nos. 10, 12-15</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>RH Rear Shackle Bracket Service Kit, One Side</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Includes Key Nos. 11-15</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>60961-679</td>
<td>266 Frame Rail</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>60961-680</td>
<td>300 Frame Rail</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>58258-029</td>
<td>M20 x 2.5-6G 160 mm Hex Bolt, Replaces 58258-008</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>58246-029</td>
<td>M20 Flat Washer, Replaces 58246-009</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>58259-003</td>
<td>M20 x 2.5-6H Locknut, Replaces 58259-001</td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>60631-002</td>
<td>Shock Stop Spacer</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>68957-OXK</td>
<td>STEERTEK NXT Axle Assembly</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Includes Key Nos. 17-44</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>68956-003M</td>
<td>12K/12.5K, 338/366 mm Ride Ht., 4.25 Drop</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>68956-004M</td>
<td>12K/12.5K, 338 mm Ride Ht., 5.36 Drop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>68956-005M</td>
<td>13.2K/14.6K, 338/366 mm Ride Ht., 4.25 Drop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>68956-006M</td>
<td>13.2K/14.6K, 338 mm Ride Ht., 5.36 Drop</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>58900-407</td>
<td>LH Lower Steering Knuckle Assembly</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td><190 Ackermann STD Hub</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>58900-409</td>
<td>>190 Ackermann STD Hub</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>58900-417</td>
<td><190 Ackermann Unitized Hub</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>58900-419</td>
<td>>190 Ackermann Unitized Hub</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>64246-000</td>
<td>ABS Sensor Sleeve</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>60903-411</td>
<td>LH Upper Steering Knuckle Assembly</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>338 mm Ride Height</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>60903-413</td>
<td>366 mm Ride Height</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>60904-002</td>
<td>RH Upper Steering Knuckle Assembly</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kingpin Bushing and Bearing Service Kit</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Includes Kit Nos. 60961-629 & -630</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>68687-003</td>
<td>Grease Cap Assembly, Upper</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>68687-002</td>
<td>Grease Cap Assembly, Lower</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>33117-000</td>
<td>Grease Zerk</td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td>58909-001</td>
<td>Kingpin Bushing</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>60961-631</td>
<td>Thrust Bearing Service Kit, Axle Set</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Includes Kit Nos. 60961-632 & 60961-633</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>59828-000</td>
<td>RH Composite Thrust Bearing Kit</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>64256-000</td>
<td>RH Roller Thrust Bearing</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>68731-000</td>
<td>Kingpin Seal</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>60236-001</td>
<td>½"-11 UNC Socket Head Cap Screw</td>
<td>4</td>
</tr>
<tr>
<td>31</td>
<td>60937-000</td>
<td>Loctite® (Red) Compound Tube</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not Shown</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>**Castle Nut</td>
<td>2</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>**LH Tie Rod End</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>64000-001</td>
<td>12K/12.5K</td>
<td></td>
</tr>
<tr>
<td></td>
<td>64002-001</td>
<td>13.2K/14.6K</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>**RH Tie Rod End</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>64000-002</td>
<td>12K/12.5K</td>
<td></td>
</tr>
<tr>
<td></td>
<td>64002-002</td>
<td>13.2K/14.6K</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>29162-001</td>
<td>½" Flat Washer</td>
<td>2</td>
</tr>
<tr>
<td>36</td>
<td>17800-004</td>
<td>Tie Rod Nut Cotter Pin</td>
<td>2</td>
</tr>
<tr>
<td>37</td>
<td>60238-001</td>
<td>½"-13 UNC Square Head Bolt</td>
<td>2</td>
</tr>
<tr>
<td>38</td>
<td>60240-000</td>
<td>½"-13 UNC Hex Jorn Nut</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>**U-bolt Clamp Group Service Kit, One Side</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Includes Key Nos. 39-41</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Includes Key Nos. 39-41</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12K/12.5K and 13.2K/14.6K</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Includes Key Nos. 34-36</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>58246-009</td>
<td>M20 Flat Washer</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>65663-006</td>
<td>338 mm Ride Height, Bolt Length 225 mm</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>65663-006</td>
<td>366 mm Ride Height, Bolt Length 275 mm</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>65072-001</td>
<td>M20 x 2.5-6H U-bolt, 12K/12.5K and 13.2K/14.6K</td>
<td>8</td>
</tr>
<tr>
<td>41</td>
<td>65072-001</td>
<td>M20 x 2.5-6H Nylon Locknut</td>
<td>8</td>
</tr>
<tr>
<td>42</td>
<td>68913-000</td>
<td>LH Top Rod Assembly</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>266 Frame Rail</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>68913-000</td>
<td>RH Top Rod Assembly</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>266 Frame Rail</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>68913-000</td>
<td>Rubber Axle Stop</td>
<td>2</td>
</tr>
<tr>
<td>45</td>
<td>64040-000</td>
<td>Dowel Pin</td>
<td>2</td>
</tr>
<tr>
<td>46</td>
<td>57159-004</td>
<td>338 mm Ride Height, 66.8 mm</td>
<td>2</td>
</tr>
<tr>
<td>47</td>
<td>57159-008</td>
<td>366 mm Ride Height, 94.8 mm</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>64166-000</td>
<td>Air Spring Adapter for Top Pad</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.2K/14.6K Only</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>64318-028</td>
<td>Axle Spacer, 366 mm Ride Height, 28 mm</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not Shown</td>
<td></td>
</tr>
</tbody>
</table>
- Vehicles built with STEERTEK axle and Post’07 Engine prior to July 2011
<table>
<thead>
<tr>
<th>KEY NO.</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>NO.REQ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>66349-002L</td>
<td>Air Spring</td>
<td>2</td>
</tr>
<tr>
<td>a</td>
<td>60716-002L</td>
<td>12K/12.5K, Replaces 60750-002L</td>
<td>13.2K/14.6K</td>
</tr>
<tr>
<td>2</td>
<td>60757-000</td>
<td>12K/12.5K 266 Rail</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>60976-000</td>
<td>12K/12.5K 300 Rail</td>
<td>2</td>
</tr>
<tr>
<td>a</td>
<td>60738-001</td>
<td>12K/12.5K 266 Rail</td>
<td>6</td>
</tr>
<tr>
<td>b</td>
<td>60738-002</td>
<td>12K/12.5K 300 Rail</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>64838-002L</td>
<td>Shock Absorber</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replaces 64838-001L</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>64241-001</td>
<td>Front Leaf Spring Assembly Service Kit, One Side, Includes Key Nos. 5, 13</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>64772-000</td>
<td>Leaf Spring Assembly with Bushings</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Includes Key No. 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replaces 64485-000, 65215-000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>**Steel Galvanized Liner</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>**Front Spring Hanger</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>64486-000</td>
<td>Inboard Spring Adapter, Replaces 64162-000-002</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>58258-009</td>
<td>M20 x 2.5-6G 230 mm Hex Bolt</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40000-002L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12K/12.5K, 338/366 mm Ride Ht., 4.25 Drop, Replaces 59924-005</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.2K/14.6K, 338 mm Ride Ht., 5.36 Drop</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12K/12.5K, 338 mm Ride Ht., 5.36 Drop, Replaces 58909-000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12K/12.5K, 338 mm Ride Ht., 5.36 Drop, Replaces 58909-000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12K/12.5K, 338 mm Ride Ht., 5.36 Drop, Replaces 58909-000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12K/12.5K, 338 mm Ride Ht., 5.36 Drop, Replaces 58909-000</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>60961-072</td>
<td>LH Rear Shackle Bracket Service Kit, One Side, Includes Key Nos. 11-16</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Includes LH Rear Shackle Bracket w/Bushing</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Cast Part No. 64153-002)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>60961-072</td>
<td>RH Rear Shackle Bracket Service Kit, One Side, Includes Key Nos. 10, 11-16</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Includes RH Rear Shackle Bracket w/Bushing</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Cast Part No. 64153-002)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>64175-000</td>
<td>Thrust Washer</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>64175-001</td>
<td>266 Frame Rail</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>64175-002</td>
<td>300 Frame Rail</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>64176-000</td>
<td>266 Frame Rail</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>64176-001</td>
<td>300 Frame Rail</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>60952-0X</td>
<td>Shock Bracket Service Kit, Axle Set, Includes Key Nos. 12-17</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>64905-001</td>
<td>LH Lower Steering Knuckle Assembly</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>58900-007</td>
<td><190 Ackermann STD Hub</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>58900-009</td>
<td>>190 Ackermann STD Hub</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>58900-017</td>
<td><190 Ackermann Unitized Hub</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>58900-019</td>
<td>>190 Ackermann Unitized Hub</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>64905-003</td>
<td>RH Lower Steering Knuckle Assembly</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>58900-008</td>
<td><190 Ackermann STD Hub</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>58900-010</td>
<td>>190 Ackermann STD Hub</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>58900-018</td>
<td><190 Ackermann Unitized Hub</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>58900-020</td>
<td>>190 Ackermann Unitized Hub</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>64905-005</td>
<td>LH Lower Steering Knuckle Assembly</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>60903-011</td>
<td>338 mm Ride Ht.</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>60903-013</td>
<td>366 mm Ride Ht.</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>64246-000</td>
<td>ABS Sensor Sleeve</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>60904-002</td>
<td>RH Upper Steering Knuckle Assembly</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>60904-002</td>
<td>RH Upper Steering Knuckle Assembly</td>
<td>1</td>
</tr>
</tbody>
</table>

AIRTEK® for Volvo Vehicles

U-bolt Clamp Group Service Kit, One Side, Includes Key Nos. 42-46

<table>
<thead>
<tr>
<th>KEY NO.</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>60961-185</td>
<td>12K/12.5K and 13.2K/14.6K</td>
<td>366 mm Ride Height, 4.25 Drop</td>
</tr>
<tr>
<td>60961-186</td>
<td>12K/12.5K and 13.2K/14.6K</td>
<td>338 mm Ride Height, 5.36 Drop</td>
</tr>
</tbody>
</table>

See notes on page 14
<table>
<thead>
<tr>
<th>KEY NO.</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>NO. REQ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>60961-015</td>
<td>Top/Bottom Axle Wrap Liner Service Kit, One Side, Includes Key Nos. 42-43</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>60508-000</td>
<td>Top Axle Wrap Liner</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>59845-000S</td>
<td>Bottom Axle Wrap Liner</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>65663-002</td>
<td>M20 x 2.5-6G U-bolt</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>65663-003</td>
<td>12K/12.5K and 13.2K/14.6K 366 mm Ride Ht., Bolt Length 275 mm</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>65663-004</td>
<td>13.2K/14.6K 338 mm Ride Ht., Bolt Length 225 mm</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>65663-005</td>
<td>338 mm Ride Ht., Bolt Length 255 mm</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>58246-009</td>
<td>M20 Flat Washer</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>65072-001</td>
<td>M20 x 2.5-6H Locknut</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>67266-001</td>
<td>LH Top Pod</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>67300-001</td>
<td>266 Frame Rail, Replaces 64517-001L, 64172-001L, 64725-001L, 65493-001L</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>67300-002</td>
<td>300 Frame Rail, Replaces 64173-001L, 64173-001L, 64727-001L, 65605-001L</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>67266-002</td>
<td>RH Top Pod</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>67300-002</td>
<td>266 Frame Rail, Replaces 64517-002L, 64172-002L, 64725-002L, 65493-002L</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>67300-002</td>
<td>300 Frame Rail, Replaces 64161-002L, 64161-002L, 64727-002L, 65605-002L</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>64080-000</td>
<td>Rubber Axle Stop</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>64166-000</td>
<td>Air Spring Adapter for Top Pad</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
* Not supplied by Hendrickson, used for reference only. Refer to OEM (vehicle manufacturer) for more information. Hendrickson is not responsible for components supplied by vehicle manufacturer. For assistance with maintenance and rebuild instructions on these components see vehicle manufacturer.

** Item included in assembly only, part not sold separately.

*** Hendrickson supplies different tie rod assemblies and each type may take a different replacement tie rod end kit to service. Prior to ordering find the part number on the tie rod tube, see Hendrickson Literature No. SEU-0223 or contact Hendrickson Truck Parts for corresponding kit numbers.

Hendrickson AIRTEK Ride Height Gauges for Volvo Vehicles can be obtained on-line at http://72.3.226.140/literature/litform-new.asp
- STEERTEK NXT axle – 12K/12.5K/13.2K/14.6K Capacity Height Gauge – Lit No. 45745-359
- STEERTEK axle – 12K/12.5K Capacity Height Gauge – Lit No. 45745-170
- STEERTEK axle – 13.2K/14.6K Capacity Height Gauge – Lit No. 45745-195
Vehicles built with STEERTEK axle and Pre'07 Engine

Top Pad with Straight Hex Bolt

- **Left Hand Side**

<table>
<thead>
<tr>
<th>KEY NO.</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>NO. REQ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>59952-017</td>
<td>Top Axle Wrap</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>64722-003</td>
<td>Bottom Axle Wrap</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>60508-000</td>
<td>Top Axle Wrap Liner</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>59845-000S</td>
<td>Bottom Axle Wrap Liner</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>60961-000</td>
<td>M20 x 2.5-6G Hex Bolt</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>58258-007</td>
<td>LH 12K/12.5K, Replaces 65601-001</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>65601-006</td>
<td>LH 12K/12.5K, Replaces 65601-001</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>65602-006</td>
<td>RH 13.2K/14.6K, Replaces 65602-002</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>59935-017</td>
<td>LH HCV, Replaces 59935-006</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>58246-009</td>
<td>M20 Flat Washer</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>64480-005</td>
<td>LH Height Control Valve Bracket</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>64480-009</td>
<td>RH Height Control Valve Bracket</td>
<td>1</td>
</tr>
</tbody>
</table>

Vehicles built between 03/05 and 12/07

Dual Height Control Valves

- **LEFT HAND 12K/12.5K Shown**
- **RIGHT HAND 12K/12.5K Shown**

<table>
<thead>
<tr>
<th>KEY NO.</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>NO. REQ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>65601-006</td>
<td>LH 12K/12.5K, Replaces 65601-001</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>65602-006</td>
<td>RH 13.2K/14.6K, Replaces 65602-002</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>59427-025</td>
<td>LH, Replaces 59427-010</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>62498-000</td>
<td>M8 x 1.25-6H Hex Nut</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>59169-002</td>
<td>M8 Link Stud</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>64297-000</td>
<td>M8 x 1.25-6H Locknut</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>58246-012</td>
<td>M8 Flat Washer</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>59935-017</td>
<td>LH HCV, Replaces 59935-006</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>59935-016</td>
<td>RH HCV, Replaces 59935-009</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>58246-014</td>
<td>M6 Flat Washer, Replaces 22962-028</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>17497-001</td>
<td>¼" Lockwasher</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>66388-000</td>
<td>M6 x 1.0-6H Locknut, Replaces 65092-000</td>
<td>4</td>
</tr>
</tbody>
</table>
Vehicles built prior to 03/05

Single Height Control Valve

<table>
<thead>
<tr>
<th>KEY NO.</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>64089-000</td>
<td>Single HCV, Link Mount & Linkage Assembly</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>64094-000</td>
<td>Includes Key Nos. 1-9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>64480-000</td>
<td>Single Height Control Valve Bracket</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>64481-000</td>
<td>12K/12.5K</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>59427-006</td>
<td>Single Height Control Valve & Linkage Assembly, Includes Key Nos. 2-9</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>59428-004</td>
<td>Height Control Valve Linkage</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>64298-000</td>
<td>M8 x 1.25-6H Hexnut</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>59169-002</td>
<td>M8 Link Stud</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>64297-000</td>
<td>M8 x 1.25-6H Locknut</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>58246-012</td>
<td>M8 Flat Washer</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>59935-003</td>
<td>Height Control Valve</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>22962-028</td>
<td>¼” Flat Washer</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>49983-000</td>
<td>¼” 20 UNC Locknut</td>
<td>2</td>
</tr>
</tbody>
</table>

Obtain a Hendrickson Dual Height Control Valve Conversion Kit to convert a single height control valve to dual height control valves configuration.

Dual Height Control Valve and Linkage Kit

<table>
<thead>
<tr>
<th>Key No.</th>
<th>Description</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>60961-101</td>
<td>Air Spring (12.5K)</td>
<td>12K/12.5K</td>
</tr>
<tr>
<td>60961-102</td>
<td>Support Plate Service Kit No.60961-182</td>
<td>13.2K/14.6K</td>
</tr>
</tbody>
</table>

Vehicles built between 03/05 and 06/07 equipped with dual height control valves

Air Spring with Support Plate Service Kit No. 60961-182

<table>
<thead>
<tr>
<th>KEY NO.</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67304-002</td>
<td>Air Spring (12.5K)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>67149-000</td>
<td>Support Plate</td>
<td>1</td>
</tr>
</tbody>
</table>
SECTION 5
Special Tools

These shop made tools are designed to install and remove kingpin bushings. Bushing tools are made from cold rolled steel or equivalent. Drawings are for reference only. Hendrickson does not supply these tools.

KINGPIN BUSHING TOOLS

STEERTEK
Kingpin Bushing Driver Tool

STEERTEK
Kingpin Bushing Push-out Tool

STEERTEK
Receiving Tool

STEERTEK NXT
Kingpin Bushing Installer / Remover Tool

ADJUSTABLE STRAIGHT FLUTE REAMER

Adjustable Straight Flute Reamer

The dimension of cutting diameter must facilitate a range of 1.802” – 1.812”
SECTION 6
Towing Procedures

ON-HIGHWAY AND ON-ROADWAY
Hendrickson recommends that a vehicle equipped with a STEERTEK NXT / STEERTEK axle be towed by the following methods (listed in order of preference) for ON-HIGHWAY or ON-ROADWAY applications.

■ METHOD 1 — Wheel lift, the ideal towing procedure
■ METHOD 2 — Towing the vehicle from the rear
■ METHOD 3 — Conventional axle fork
■ METHOD 4 — Spring eye and hanger lift method (may require the removal of fairings)

Please read, understand and comply with any additional towing instructions and safety precautions that may be provided by the vehicle manufacturer.

Hendrickson will not be responsible for any damage to the axle, suspension or other vehicle components resulting from any towing method or fixture not authorized by Hendrickson.

Please contact Hendrickson Tech Services at 866-755-5968 or send e-mail to: techservices@hendrickson-intl.com with any questions regarding proper towing procedures for vehicles equipped with a STEERTEK NXT / STEERTEK axle.

METHOD 1 — WHEEL LIFT
This method provides the greatest ease for towing the vehicle. Lifting at the tires helps reduce the risk of possible damage to the axle, suspension, and engine components during towing operations, see Figure 6-1.

FIGURE 6-1

METHOD 2 — TOWING VEHICLE FROM THE REAR
This method is preferred when the proper equipment is not available to perform the wheel lift method and is necessary for wreckers not equipped with an under lift system.
METHOD 3 — AXLE FORK LIFT
This is an alternative method for towing the vehicle, but requires standard tow forks and designated lift points depending on which front axle is equipped on the vehicle, STEERTEK NXT or STEERTEK.

NOTE
When lifting a vehicle with an under lift boom, care must be taken not to damage the engine’s oil pan. Vehicles equipped with a front fairing may require removal of the front fairing prior to towing to prevent component damage.

- Place a spacer on the boom, to provide adequate clearance between the oil pan and the boom if necessary. Lift the vehicle in order to place spacer under tires. This will provide sufficient room under the axle to locate forks in the proper position.
- It is recommended to maintain the air in the air springs (if equipped) to help prevent damage to the air spring bump stop while towing the vehicle. An alternative air source may be necessary if the engine or compressor will not function. If the air spring is punctured, tow the steer axle suspension with the air springs deflated.
- Release the tractor brakes.
- Install safety straps prior to towing the vehicle, it is preferred to use nylon safety straps. Chains have a tendency to bind and may cause damage to the axle.

STEERTEK NXT equipped (vehicles built after July 2011)
1. Use a Miller Short Frame Fork, Part No. 0200019, or comparable (3.25" Clearance), 4.5" Opening, 2" Shank, see Figure 6-2.
2. Install the fork in the boom properly.
3. The proper tow fork location is centered between the locknuts on the axle spring seats, see Figure 6-3.

STEEERTEK equipped (vehicles built prior to July 2011)
1. Install the fork in the boom properly.
2. Position the proper tow forks directly under the axle, inside the axle clamp groups as shown in Figures 6-4 and 6-5.
3. Prior to lifting the vehicle, ensure that the bottom axle plate is flat in the tow fork to minimize any gap between the bottom axle plate and the tow fork, see Figure 6-6. Lift vehicle and secure the vehicle to the boom.

FIGURE 6-6

METHOD 4 — SPRING EYE AND HANGER LIFT METHOD

This method is permitted for under lift equipped units, caution must be taken as not to damage leaf spring, see Figure 6-7 for proper installation.

- Inspect ends of spring cradles for burrs or sharp edges that could damage spring.
- When securing the vehicle to the boom, it is preferred to use nylon safety straps. Chains have a tendency to bind and may cause damage to the axle.

NOTE

When lifting a vehicle with the under lift boom, see Figures 6-7 and 6-8, care must be taken as not to damage the engine oil pan. It may be necessary to remove the front fairing. If necessary place a block of wood between the top of the boom and the bottom of the axle.

FIGURE 6-7
OFF-ROADWAY TOWING

WHEN A VEHICLE IS DISABLED AND EQUIPPED WITH A STEERTEK NXT / STEERTEK AXLE, CARE MUST BE TAKEN TO ENSURE THERE IS NO DAMAGE TO THE SUSPENSION OR AXLE WHEN TOWING THE VEHICLE. THE USE OF A TOW STRAP IS NECESSARY TO TOW A DISABLED VEHICLE TO A REPAIR FACILITY PARKING LOT INTO THE SHOP BAY. THE TOW STRAPS SHOULD BE CONNECTED TO THE TOW HOOKS PROVIDED BY THE VEHICLE MANUFACTURER AT THE FRONT OF THE BUMPER. IF THE USE OF TOW HOOKS IS NOT AN OPTION, THEN A TOW STRAP MAY BE WRAPPED AROUND THE FRONT AXLE, (SEE FIGURE 6-9) IN A MANNER THAT IS ACCEPTABLE FOR TOWING THE VEHICLE FROM A REPAIR FACILITY PARKING LOT INTO THE SHOP BAY. DO NOT USE A TOW CHAIN AROUND THE FRONT AXLE OR WITH A SINGLE POINT LOCATION TO TOW THE VEHICLE. DOING SO WILL DAMAGE THE AXLE AND VOID ANY APPLICABLE WARRANTY, SEE FIGURE 6-9.

■ NYLON STRAPS OR CHAINS ARE NOT RECOMMENDED FOR ON-HIGHWAY OR ON-ROADWAY TOWING.
SECTION 7
Preventive Maintenance

Following appropriate inspection procedure is important to help ensure the proper maintenance and operation of the AIRTEK suspension system and component parts function to their highest efficiency.

HENDRICKSON RECOMMENDED PREVENTIVE MAINTENANCE INTERVALS

VISUAL INSPECTION

- The first 1,000 miles
- On-highway – every 50,000 miles (80,450 km) or 6 months, whichever comes first

COMPONENT INSPECTION

- **Air Spring** — Look for chaffing or any signs of spring or component damage.
- **Clamp group** — Check torque on clamp group mounting hardware. Refer to the Torque Specifications Section of this publication.
- **Fasteners** — Look for any loose or damaged fasteners on the entire suspension. Make sure all fasteners are tightened to the specified torque, see Torque Specification Section of this publication for recommended torque requirements. Use a calibrated torque wrench to check torque in a tightening direction. As soon as the fastener starts to move, record the torque. Correct the torque if necessary. Replace any worn or damaged fasteners.
- **Front hangers and shackle brackets** — Check for cracks or loose mounting hardware. Replace if necessary, see Component Replacement Section of this publication for replacement procedure.
- **Steering operation** — All steering components on the axle assembly must move freely through the full range of motion from axle stop to axle stop.
- **Rear shackle bracket and thrust washers** — Look for any signs of excessive wear to the shackle brackets, shackle plates and thrust washers (if equipped). See Thrust Washer Inspection detailed in this section.
- **Rubber axle stops** — The rubber axle stop is exposed to contact forces in extreme jounce conditions. It will be necessary to visually inspect the rubber axle stop for wear at the specified inspection interval. The rubber axle stop must be replaced when the contact rubber is worn down to \(\frac{1}{16} \) in above the bump stop pedestal. See Component Replacement Section of this publication for replacement.
- **Shock absorber** — Look for any signs of dents or leakage, misting is not considered a leak. See Shock Absorber Inspection in this section.
- **Steel leaf springs** — Look for cracks. Replace if cracked or broken. Check the front and rear bushings for any wear or deterioration. See Component Replacement Section of this publication for replacement procedure.
- **Steering pivot points** — Check for looseness at all pivot points on the axle assembly. Lubricate all pivot points, maximum interval is 25,000 miles. Refer to the Lubrication matrix in this section.
- **STEERTEK NXT / STEERTEK axle** — The axle should be free of any nicks or gouges. Inspect for any cracks or dents on axle.
- **Tire wear** — Inspect tires for wear patterns that may indicate suspension damage or misalignment. See Tire Inspection in this section.
- **Top and bottom axle wrap liners (If equipped)** — Look for any cracking or broken pieces on liner in load bearing areas. See Axle Wrap Liner Inspection in this section.
■ **Top pad and bump stop** — Look for cracks and or missing rubber bump stops. Replace if necessary, see Component Replacement Section of this publication.

■ **Wear and damage** — Inspect all parts of suspension for wear and damage. Look for bent or cracked parts. Replace all worn or damaged parts.

See vehicle manufacturer’s applicable publications for other preventative maintenance requirements.

LUBRICATION INTERVALS

For vehicles equipped with the STEERTEK NXT / STEERTEK axle, regular lubrication intervals should be followed to help prevent premature wear to the kingpin bushings and tie rod ends, see lubrication chart below.

NOTE

The recommended service lubrication interval is a guideline, the vehicle may require increased lubrication interval depending on severity of operation.

STEERTEK NXT / STEERTEK GREASING AND LUBRICATION SPECIFICATIONS

<table>
<thead>
<tr>
<th>Component</th>
<th>Greasing Interval</th>
<th>Grease</th>
<th>NLGI Grade</th>
<th>Outside Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kingpin Bushings</td>
<td>Maximum of 25,000 miles (40,230 kilometers), or for 90 days, whichever comes first.</td>
<td>Multipurpose Grease</td>
<td>2</td>
<td>Refer to the lubricant manufacturer’s specifications for the temperature service limits applicable to your area.</td>
</tr>
<tr>
<td>Tie Rod Ends</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drag Link</td>
<td></td>
<td></td>
<td></td>
<td>See Vehicle Manufacturer</td>
</tr>
</tbody>
</table>

NOTE: Lubrication greases acceptable for use on the STEERTEK NXT / STEERTEK axle will carry a designation of NLGI #2 EP and rated GC-LB or equivalent.

KINGPIN LUBRICATION

STEERTEK NXT upper kingpin grease zers are located on the inboard side of the steering knuckle and upper kingpin connection, see Figure 7-1. On some models of the STEERTEK NXT a grease zerk is located on the bottom of lower steering knuckle on the inboard side.

STEERTEK kingpin grease zers are located on the top and bottom of the kingpin grease caps.

1. Place vehicle on the ground.
2. Prior to greasing the kingpins on the vehicle, the suspension must be in a loaded condition.
3. Clean off all the grease fittings and grease gun tip with a clean shop towel prior to lubrication.
4. Lubricate the kingpins through the grease fittings on the top and bottom of the steering knuckle, see Lubrication Specification chart above.
5. Force the required lubricant into the upper and lower kingpin grease fittings, until new lubricant flows out from the upper kingpin connection and steering knuckle and the thrust bearing purge location, see Figures 7-2 and 7-3.
NOTE
Greasing at the lower zerk should purge grease from the thrust bearing shell. The left side of the axle has a composite style thrust bearing and the right side of the axle has a steel roller thrust bearing, see Figure 7-4. Both purge in the same area.

TIE ROD END LUBRICATION

LUBRICATION INTERVALS
1. Turn the vehicle wheels straight ahead.
2. Wipe the grease zerk and grease gun tip with clean shop towels.
3. Wipe the seal/boot clean with shop towels.
4. Attach a grease gun to the grease zerk. Either a hand or pneumatic grease gun is acceptable. If air operated grease gun is used, system air pressure should not exceed 150 psi (1035 kPa).
 CAUTION
EXCEEDING THE MAXIMUM AIR PRESSURE TO THE GREASE ZERK CAN CAUSE DAMAGE TO THE DUST BOOT AND COMPONENT FAILURE.

5. Dirt, water, and discolored old grease should flow from the relief vents or purge holes near the boot crimp or bellows area, see Figure 7-5. Continue to purge grease until fresh grease flows from the purge area.

6. If the tie rod end is designed for lube service and it will not accept grease proceed as follows:
 a. Remove the grease zerk.
 b. Inspect the threaded grease zerk hole in the tie rod end and remove any obstructions.
c. Install a new grease zerk.

d. Continue the lubrication procedure.

e. If the tie rod end will not accept grease following this procedure it will be necessary to replace the tie rod end. Refer to Tie Rod End replacement in Component Replacement Section of this publication.

7. Apply grease until all the old grease is purged from the boot and fresh grease is coming out.

TIE ROD END INSPECTION

INSPECTION PROCEDURE

Before beginning this inspection procedure, the entire system must be unloaded (i.e., the front end of the vehicle must be raised and supported with safety stands).

CAUTION

DO NOT GREASE THE TIE ROD ASSEMBLY BEFORE PERFORMING THE INSPECTION. DOING SO CAN INHIBIT EFFORTS TO DETERMINE ACTUAL WEAR.

CAUTION

REPLACE THE ENTIRE TIE ROD END IF THE BOOT IS TORN OR MISSING. FAILURE TO DO SO CAN CAUSE PREMATURE WEAR OF THE TIE ROD END.

1. Block rear wheels of vehicle. Using the bottom of the axle beam or the frame rails, raise the front end off the ground and support with stands.

2. With the engine off, turn the wheels from full left to full right and then return to the straight-ahead position.

3. Check that the boots are in place and completely installed over the tie rod ends.

4. Check for cracking or tears in the boots. Also check the boot seals for damage. Replace the entire tie rod end if the boot is damaged.

WARNING

THE COTTER PIN MUST BE INSTALLED CORRECTLY THROUGH THE TIE ROD END WITH THE CASTLE NUT TIGHTENED TO THE PROPER TORQUE SPECIFICATION IN ORDER TO SECURELY ATTACH THE TIE ROD. LOSS OF THE COTTER PIN CAN CAUSE THE TIE ROD END NUT TO BECOME LOOSE AND ADVERSELY AFFECT VEHICLE STEERING AND POSSIBLY RESULT IN TOTAL LOSS OF STEERING CONTROL.

5. Check that the tie rod end nut is installed and secured with a cotter pin. If the cotter pin is missing, check the nut torque specification and then install a new cotter pin. Always tighten the castle nut to specified torque when setting the cotter pin. **DO NOT** back off the nut to insert cotter pin.

WARNING

IT IS CRITICAL TO CHECK THE 5/8" TIE ROD CLAMP BOLT HEAD LOCATION TO VERIFY THE CLAMP FASTENERS HAVE SUFFICIENT CLEARANCE AWAY FROM THE LOWER SHOCK MOUNT AT FULL WHEEL CUT. THE FASTENERS MUST NOT CONTACT THE LOWER SHOCK MOUNT. FAILURE TO DO SO CAN CAUSE ONE OR MORE COMPONENTS TO FAIL CAUSING LOSS OF VEHICLE CONTROL AND POSSIBLE PERSONAL INJURY OR PROPERTY DAMAGE.

6. Verify the 5/8" tie rod clamp bolt head does not contact the lower shock mount at full wheel cut, see Figure 7-6.

WARNING

THE THREADED PORTION OF THE TIE ROD END MUST EXTEND PAST THE SLOTS INTO THE TIE ROD CROSS TUBE, SEE FIGURE 7-6. FAILURE TO DO SO CAN CAUSE COMPONENT DAMAGE, LOSS OF VEHICLE CONTROL AND POSSIBLE PERSONAL INJURY OR PROPERTY DAMAGE.

7. Check that the tie rod end is threaded correctly into the cross tube and is engaged deeper than the end of the cross tube slot. The tie rod end must be visible the entire length of the cross tube slot, see Figure 7-6.

8. Check that grease zerks are installed. Replace a damaged grease zerk with a new one.
DO NOT USE THE FOLLOWING ITEMS OR METHODS TO CHECK FOR MOVEMENT OF THE TIE ROD ASSEMBLY, WHICH CAN CAUSE DAMAGE TO COMPONENTS:

- A CROW BAR, PICKLE FORK OR 2 X 4.
- ANYTHING OTHER THAN HANDS USED TO GRASP AND ROTATE THE CROSS TUBE ASSEMBLY (CAN RESULT IN DAMAGE TO THE CROSS TUBE).
- EXCESSIVE PRESSURE OR FORCE APPLIED TO THE TIE ROD ENDS OR THE JOINTS OF THE ASSEMBLY.

9. By hand or using a pipe wrench, with jaw protectors to avoid gouging the cross tube, rotate the cross tube toward the front of the vehicle and then toward the rear. After rotating, center the cross tube. If the cross tube will not rotate in either direction, replace both tie rod ends, see Figure 7-7.

10. Position yourself directly below the tie rod end. Using both hands, grab the assembly end as close to the tie rod end as possible (no more than 6" or 152.4 mm). Apply hand pressure with reasonable human effort vertically up and down in a push-pull motion several times (using approximately 50-100 lbs. of force). Check for any movement or looseness at both tie rod end locations, see Figure 7-8.
11. If there is any movement in the tie rod assembly, install a magnetic based dial indicator on the Ackermann arm, see Figure 7-9.

12. Set the dial indicator to zero.

13. Apply hand pressure with reasonable human effort vertically up and down in a push-pull motion several times (using approximately 50-100 lbs. of force). Observe the reading on the dial indicator.

14. If the reading is more than 0.060", replace both tie rod ends at the next service interval.

15. If a tie rod end exhibits ≥ 0.125" of movement by hand, the vehicle should be removed immediately from use and the tie rod end be replaced.

NOTE

According to the Commercial Vehicle Safety Alliance (CVSA), the "out of service" criteria for front steer axle tie rod assemblies on any commercial vehicle is: Any motion other than rotational between any linkage member and its attachment point of more than 1/8" (3 mm) measured with hand pressure only. (393.209(d)), (published in the North American Standard Out-of-Service Criteria Handbook, April 1, 2006.)

CLAMP GROUP RE-TORQUE INTERVAL

LOOSE OR OVER TORQUED FASTENERS CAN CAUSE COMPONENT DAMAGE, LOSS OF VEHICLE CONTROL, PROPERTY DAMAGE, OR SEVERE PERSONAL INJURY. MAINTAIN CORRECT TORQUE VALUES AT ALL TIMES. CHECK TORQUE VALUES ON A REGULAR BASIS AS SPECIFIED.

1. Clamp group locknuts must be torqued to specification at preparation for delivery.

2. Clamp group locknuts must be re-torqued at 1,000 miles.

3. Thereafter follow the 6 month / 50,000 mile inspection and annual re-torque interval.

4. Ensure that the clamp group is properly aligned and the U-bolts / hex bolts are seated properly in the top pad.

 ■ STEERTEK NXT: Ensure the top pad is centered on the axle spring seat, see Figure 7-10.
STEERTEK: Ensure that the bottom axle wrap is centered on the top axle wrap, see Figure 7-11.

FIGURE 7-11

Volvo vehicles built with **U-BOLTS** • Post '07 Engine

- **IMPORTANT**
 - Ensure that Axle Clamp Group is properly aligned

Volvo vehicles built with **HEX BOLTS** • Pre '07 Engine

- **IMPORTANT**
 - Ensure that M20 U-bolts are seated properly in the Top Pad

M20 Clamp Group Locknuts
Tightening Torque 310 ± 20 ft. lbs.

5. Tighten the clamp group locknuts evenly in 50 foot pounds (68 Nm) increments in the proper pattern to achieve uniform bolt tension, see Figure 7-12.
 - **STEERTEK NXT** - 350 ± 20 foot pounds (475 ± 27 Nm) torque
 - **STEERTEK** - 310 ± 20 foot pounds (420 ± 27 Nm) torque
TIRE INSPECTION

The leading potential causes of tire wear according to TMC (The Technology & Maintenance Council) are the following in order of importance:

1. Tire Pressure
2. Toe Setting
3. Thrust Angle
4. Camber

The following tire inspection guidelines are based upon TMC recommended practices. Any issues regarding irregular tire wear where Hendrickson is asked for assistance will require tire and alignment maintenance records as described in the TMC literature number RP 642 or TMC “Guidelines for Total Vehicle Alignment” publication.

Tire wear is normally the best indicator of vehicle alignment condition. If tires are wearing too rapidly or irregularly, alignment corrections may be needed. The tire wear patterns described below can help isolate specific alignment problems.

The most common conditions of concern are:

- Overall Fast Wear (Miles per 32nd)
- Feather Wear
- Cupping
- Diagonal Wear
- Rapid Shoulder Wear (One shoulder only)
- One-Sided Wear

FIGURE 7-13

Overall Fast Wear (Miles per 32nd)

Fast wear can be described as exhibiting a good, but accelerated wear pattern. It is typically caused by operating conditions, such as mountainous terrain, frequency and severity of turning, abrasive road surfaces in combination with vehicle configurations and their attributes—such as power steering, heavy axle loads, high wheel cuts, setback axles, short wheelbase tractors, long wheelbase straight trucks. To correct this problem, consult with vehicle and tire manufacturers when specifying equipment or replacing tires. For more information, see TMC RP 219A publication, page 11. For information on how to accurately measure and record tire rates, see TMC RP 230 publication.

FIGURE 7-14

Feather Wear

Tread ribs or blocks worn so that one side is higher than the other resulting in step-offs across the tread face. Generally, ribs or blocks exhibit this wear. To spot this problem, do the following:

With one hand flat on the tread of the tire and a firm down pressure, slide your hand across the tread of the tire. In one direction, the tire will feel smooth and in the opposite direction there will be a sharp edge to the tread. Typical causes of feather wear include: excessive side force scrubbing, resulting from conditions of misalignment such as excessive toe, drive axle misalignment, worn, missing or damaged suspension components, bent tie rods or other chassis misalignment.

To correct this problem, tires can be rotated to another axle for maximum utilization of remaining tread. Additionally, diagnose the vehicle itself and correct misalignment condition as required. If steer tire feathers are in opposite directions, an improper toe condition is most likely the cause. For more information, see TMC RP 219A publication, page 5.

If feather wear on both steer tires is in the same direction, drive axle or other chassis misalignment is indicated. If one steer tire shows feather wear and the other steer tire has normal wear, a combination of toe and drive axle or chassis misalignment is indicated.
FIGURE 7-15

CUPPING

Cupping — Localized, dished out areas of fast wear creating a scalloped appearance around the tire. Cupping, which appears around the tire on the shoulder ribs, may also progress to adjoining ribs. See TMC RP 219A publication, page 7. Cupping is usually a result of moderate-to-severe imbalance, improper rim/wheel mounting, excessive wheel endplay or other assembly non-uniformity. It can also be due to lack of shock absorber control on some suspension types.

To solve cupping problems:
- **Tires** – Correct mismount or balance problem. If ride complaints arise, steer tires may be rotated to drive or trailer axle.
- **Vehicle** – Diagnose component imbalance condition, i.e., wheel, rim, hub, brake, drum. Correct as necessary.

Diagonal Wear — Can be described as localized flat spots worn diagonally across the tread at approximately 25-35° angles, often repeating around the tread circumference. For more information, see TMC RP 219A publication, page 20.

Diagonal wear is usually caused by bad wheel bearings, toe-out, mis-mounting of tire and wheel assembly to axle, and mismatched duals for size and/or inflation pressures. It may start as brake skid. Diagonal wear is aggravated by high speed empty or light load hauls.

To correct diagonal wear, reverse direction of rotation of the tire. If wear is excessive, true or retread. If the source of trouble is the vehicle, diagnose cause and correct as needed.

FIGURE 7-16

DIAGONAL WEAR

FIGURE 7-17

RAPID SHOULDER WEAR

(One Shoulder Only)

Rapid Shoulder Wear (One Shoulder Only) — Is defined as a tire worn on the edge of one shoulder, sometimes extending to inner ribs. It can progress to diagonal wipeout. For more information, see TMC RP 219A publication, page 22.

This wear condition is usually caused by excessive toe or excessive camber. These conditions can be created by a misaligned or bent axle and can also be caused by loose or worn wheel bearings.

To correct this type of rapid shoulder wear:
- **Tires** – Change direction of rotation of tire. If shoulder wear is severe, remove and retread.
- **Vehicle** – Diagnose misalignment and/or mechanical condition and correct.

FIGURE 7-18

ONE-SIDED WEAR

One-sided wear — Is excessive wear on one side of tire extending from the shoulder towards the center of the tread. For more information, see TMC RP 219A, page 26.

One-sided wear is usually caused by improper alignment, worn kingpins, loose wheel bearings, excessive camber, excessive axle loads, non-parallel axles, or non-uniform tire and wheel assembly caused by improper bead seating or bent wheel.

To correct one-sided wear:
- **Tires** – Depending on severity, rotate tires to another axle position or, if worn to minimum tread depths, submit for possible retreading.
- **Vehicle** – Diagnose mechanical problem and correct.
SHOCK ABSORBER INSPECTION

Hendrickson uses a long service life, premium shock absorber on all AIRTEK suspensions. When the shock absorber replacement is necessary, Hendrickson recommends that the shock absorbers be replaced with identical Hendrickson Genuine parts for servicing. Failure to do so will affect the suspension performance, durability, and will void any applicable warranty. Inspection of the shock absorber can be performed by doing a heat test, and a visual inspection. For instructions on shock absorber replacement see Component Replacement Section of this publication. It is not necessary to replace shock absorbers in pairs if one shock absorber requires replacement.

HEAT TEST

1. Drive the vehicle at moderate speeds on rough road for minimum of fifteen minutes.

DO NOT GRAB THE SHOCK AS IT COULD POSSIBLY CAUSE PERSONAL INJURY.

2. Lightly touch the shock body carefully below the dust cover, see Figure 7-19.

3. Touch the frame to get an ambient reference. A warm shock absorber is acceptable, a cold shock absorber should be replaced.

4. To inspect for an internal failure, remove and shake the suspected shock. Listen for the sound of metal parts rattling inside. Rattling of metal parts can indicate that the shock has an internal failure.

VISUAL INSPECTION

Look for these potential problems when doing a visual inspection. Inspect the shock absorbers fully extended. Replace as necessary.

LEAKING VS. MISTING SHOCK VISUAL INSPECTION

The inspection must not be conducted after driving in wet weather or a vehicle wash. Shocks needs to be free from water. Many shocks are often misdiagnosed as failures. Misting is the process whereby very small amounts of shock fluid evaporate at a high operating temperature through the upper seal of the shock. When the "mist" reaches the cooler outside air, it condenses and forms a film on the outside of the shock body. Misting is perfectly normal and necessary function of the shock. The fluid which evaporates through the seal area helps to lubricate and prolong the life of the seal.
A shock that is truly leaking and needs to be replaced will show signs of fluid leaking in streams from the upper seal. These streams can easily be seen when the shock is fully extended, underneath the main body (dust cover) of the shock. Look for these potential problems when doing a visual inspection. Inspect the shock absorbers fully extended. Replaced as necessary.

NOTE
The AIRTEK suspension is equipped with a premium seal on the shock, however this seal will allow for misting to appear on the shock body (misting is not a leak and is considered acceptable).

If the shock is damaged install new shock absorber and replace as detailed in the Component Replacement Section of this publication.

THRUST WASHER INSPECTION (If equipped)
In normal use these components will function satisfactorily, even though the components may show some wear.

NOTE
If one thrust washer is worn out, Hendrickson recommends both thrust washers on that side of the suspension be replaced. Inspect the thrust washers on the other side of the vehicle and replace if necessary. See Thrust Washer replacement procedure in the Component Replacement Section of this publication.

An indication that the thrust washers are worn, or need replacement is when the suspension exhibits one or more of the following conditions:

■ Excessive lateral movement of the leaf spring.
■ The rear leaf spring eye is in contact with the shackle bracket.
■ Thrust washer thickness is less than ⅛” (0.125”) or 3.17 mm. thrust washers can be measured with a micrometer or a ruler.

AXLE WRAP LINER INSPECTION (If equipped)

NOTE
Axle Wrap Liners are not equipped on vehicles built after July 2011 with STEERTEK NXT axle.

INSPECTION PROCEDURE

■ Axle wrap liners are installed on the STEERTEK axle to help prevent any type of abrasion on the axle at the clamp group area. Any time an axle wrap is removed it is mandatory that the axle wrap liner be replaced.

■ Liner Crack Criteria:
It is possible for the axle wrap liner to crack during service. If the liner is cracked and all the pieces are intact it is not necessary to replace the liner. If the liner is broken out and there are pieces missing the liner must be replaced immediately, see Figure 7-22. See Axle Wrap replacement in Component Replacement Section of this publication.
KINGPIN BUSHING INSPECTION

INSPECTION PROCEDURE

1. Chock the wheels to help prevent the vehicle from moving. Set the parking brake.
2. Use a jack to raise the vehicle until the wheels are off the ground. Support the vehicle with safety stands.
3. **CHECKING THE UPPER KINGPIN BUSHING.** Install a dial indicator so that the base is on the axle beam and the indicator tip is on the side of steering knuckle, see Figure 7-23.

4. Set the dial indicator to "0" zero.
5. Move the top of the tire in and out by applying reasonable constant pressure and then release, see Figure 7-25.
6. Check the reading on the dial indicator. If the dial indicator moves more than 0.015", the upper bushing is worn or damaged. Replace both bushings. Refer to the Kingpin Bushing replacement procedure in the Component Replacement Section of this publication.

7. **CHECKING THE LOWER KINGPIN BUSHING.** Install a dial indicator so that the base is on the axle and the indicator tip is against the inside of the bottom of the knuckle, see Figure 7-24.

8. Set the dial indicator to "0" zero.
9. Move the bottom of the tire in and out. If the dial indicator moves more than 0.015", the lower bushing is worn or damaged. Replace both kingpin bushings. Refer to the Component Replacement Section of this publication.

NOTE

If one bushing is worn or damaged, it is mandatory to replace both the top and bottom bushings on that knuckle assembly.
STEERING KNUCKLE INSPECTION

CHECKING VERTICAL END PLAY (UP AND DOWN MOVEMENT)

The operating spec for vertical end play on the steering knuckle is 0.008" to 0.030".

1. Chock the rear tires to help prevent the vehicle from moving.
2. Set the parking brakes.
3. Use a jack to raise the vehicle until both tires are 1.0" off the ground.

FIGURE 7-26

4. Place a dial indicator, see Figure 7-26, on each side of the axle as follows:
 a. Index the wheels slightly (left or right).
 b. Place the magnetic dial indicator base on the axle.
 c. Place the tip of the dial indicator on the top of the upper steering knuckle.
5. Set the dial indicator to “0” (zero).
6. Lower the jack.
7. If vertical end play is greater than 0.030", or below 0.008" an adjustment of the upper knuckle is necessary.

ADJUSTMENT

1. ■ If the vertical end play is greater than 0.030", loosen the socket head cap screws and push down on the knuckle assembly until the proper vertical end play is achieved.
 ■ If the vertical end play is less than 0.008", loosen the socket head cap screws and pull up on the knuckle assembly until the proper vertical end play is achieved.
2. Retighten the socket head cap screws to 190 ± 10 foot pounds (258 ± 14 Nm) torque.

NOTE

ONLY if the vehicle is built prior to July 2011 equipped with the STEERTEK axle can the vertical end play be further adjusted with a shim.

STEERTEK axle (prior to July 2011)

3. ■ If vertical end play is greater than 0.030", install shims (Hendrickson part no. 60259-002) between the top of the axle and the bottom of the upper steering knuckle to obtain the proper vertical end play specification.
 ■ If the vertical end play is less than 0.008", remove shims (Hendrickson part no. 60259-002) between the top of the axle and the bottom of the upper steering knuckle to obtain the proper vertical end play specification.
SECTION 8
Alignment & Adjustments

ALIGNMENT DEFINITIONS

FIGURE 8-1

ACKERMANN GEOMETRY

Ackermann Steering Geometry — The geometry of the four bar linkage consisting of the front axle, two knuckle assemblies, and tie rod assembly is designed to provide free rolling of front tire in a turn. Ackermann geometry is dependent upon the steering axle track-width and wheelbase of the vehicle. Improper geometry results in wheel scrub in turns which generally appears as toe wear on the tire, usually more wear on one side of the vehicle than the other due to the operational route of the vehicle.

FIGURE 8-2

Camber — The angle formed by the inward or outward tilt of the wheel reference to a vertical line. Camber is positive when the wheel is tilted outward at the top and is negative when the wheel is tilted inward at the top.

Excessive positive camber may cause smooth wear on the outer half of the tire tread. Excessive negative camber may cause wear on the inner half of the tread. Static-unloaded camber angles are built into the axle to put the loaded tire perpendicular to the road.

FIGURE 8-3

Caster — The forward or rearward tilt of the steering axle kingpin in reference to a vertical line. The angle is measured in degrees. Caster is positive when the top of the steering axis is tilted rearward and is negative when the tilt is forward. Proper caster is important for directional stability and returnability. Too much positive caster can cause shimmy, excessive steering effort and is normally a vehicle performance and handling consideration. Uneven positive caster may create a steering pull toward the side with the lower caster. This attribute may be used to compensate for crowned roads.
FIGURE 8-4

Kingpin Inclination (KPI) — The inward tilt of the kingpin from the vertical. This front suspension parameter has a pronounced effect on steering effort and returnability. As the front wheels are turned around an inclined kingpin, the front of the truck is lifted. This lifting of the vehicle is experienced as steering effort when the turn is executed and exhibits itself as recovery force when the steering wheel is released.

Kingpin Offset — The distance between the center of the tire patch and intersection of the kingpin axis with the ground. This parameter of front-end geometry is important in vehicles without power steering and has a major effect on static steering. If there is no kingpin offset, the tires must scrub around the center of the pin patch when turned in a static condition, resulting in higher static steering efforts.

Steering Arm — The component that connects the drag link to the axle knuckle assembly.

FIGURE 8-5

Scrub, Skew, Tram Angle or Parallelism — The angle formed by two thrust or tracking lines of a tandem (or multiple) axle vehicle. As indicated by the term “parallelism”, the ideal condition is when the two thrust lines for a 0° angle, or are parallel to each other. Positive skew or tram is when the distance between the right axle ends is less than the distance between the left.

Any scrub angle other than 0° will cause the tandem axles to work against each other. The steer axle must be turned to offset the “push” of the tandem axles to keep the vehicle moving straight ahead. This causes every tire on the vehicle to “scrub.” Tire wear from tandem scrubbing occurs at the leading edge of the steer tires in a pattern called “inside/outside” wear, that is, the inside edge of the left steer tire and the outside edge of the right steer tire will exhibit irregular wear for example. Additional tire wear may occur on all tandem axle tires.

FIGURE 8-6

Thrust Angle, Tracking, or Square — The angle formed by the centerline of the vehicle frame (geometric centerline) and the direction that an axle points. As indicated by the term “square”, the ideal value for the angle is 0° or when the axle centerline is at 90° or perpendicular to the geometric centerline. Thrust or tracking to the right is positive, and to the left is negative.

A steering correction is required to offset the effect of the thrust angles and keeps the vehicle traveling in a straight line. It results in a lateral offset between the steer and drive axle tires commonly referred to as “dog tracking.”
Tie Rod Arm (Ackermann-Arm, Cross Tube Arm) — The component that transmits steering forces between left and right axle knuckle assemblies through the cross tube assembly.

Toe-in — Is when the horizontal line intersects in front of the wheels, or the wheels are closer together in front than in the back. Toe-in is commonly designated as positive, toe-out as negative. Excessive toe-in wears the outside edge of the tires. Steer axle toe is adjustable to reduce wear to the leading edge of the tire and also to avoid road wander. Toe is adjusted in a static, unloaded condition so that the tires will run in a straight line under a dynamic, loaded condition.

Toe-out — Is when the horizontal lines intersect behind the wheels, or the wheels are closer together in back than in front. Toe-in is commonly designated as positive, toe-out as negative. Excessive toe-out wears the inside edge of the tires. Steer axle toe is adjustable to reduce wear to the leading edge of the tire and also to avoid road wander. Toe is adjusted in a static, unloaded condition so that the tires will run in a straight line under a dynamic, loaded condition.

Toe-out on Turns — (See Ackermann Geometry). Excessive turning angles such as those encountered in pickup and delivery operations may contribute to premature tire wear. Be advised that the greater turning angles, the more that toe and camber change. If you have any doubt regarding the optimum turning angles for your operation, contact the vehicle’s manufacturer, axle OEM, tire OEM and alignment equipment manufacturer for advice.

Total Toe — The angle formed by two horizontal lines through the planes of two wheels. Steer axle toe is adjustable to reduce wear to the leading edge of the tire and also to avoid road wander. Toe is adjusted in a static, unloaded condition so that the tires will run in a straight line under a dynamic, loaded condition.
INSPECTION PRIOR TO ALIGNMENT

WHEELS AND TIRES
Examine the following items:
- The tires are inflated to the manufacturer's specified tire pressure.
- The steer axle tires are the same size and type.
- The lug nuts are tightened to manufacturer's specified torque.
- The wheels are balanced.
- The wheels and tires are free of excessive wear and damage.
- Wheel bearing end play is within OEM specification.

FRONT SUSPENSION
Inspect the following:
- All fasteners are installed and tightened to the specified torque. See Tightening Torque Specification Section of this publication.
- Leaf springs are free of wear or damage.
- Air springs are free of wear or damage.
- Shock absorbers are free of wear and damage.
- Vehicle ride height for both the front and rear are within specification, follow the vehicle manufacturer’s guidelines (if equipped).
- Front and rear spring mounts are free of wear or damage.

INSPECT TIE ROD ENDS
Perform “Tie Rod Inspection” procedure; refer to the Preventive Maintenance Section in this publication.

REAR AXLE AND REAR SUSPENSION
The rear axle can cause front tire wear. If the outer edge of one front tire is worn and the inner edge of the other front tire is worn, check the following:
- Make sure the rear axle (especially a tandem axle) is correctly aligned. Refer to the procedure from the manufacturer of the vehicle or the suspension.
- All fasteners including U-bolts (if applicable) are installed and tightened to the specified torque.
- The leaf springs are not worn or damaged.
- The bushings in the leaf springs are not worn or damaged.
- The torque rods (if used) are correctly adjusted (if adjustable).
- The frame is not bent or twisted.
- Refer to any additional recommendations and specifications from the manufacturer of vehicle on rear axles and suspensions. Reference the TMC (The Technology & Maintenance Council) Guidelines for Total Vehicle Alignment.
FRONT WHEEL ALIGNMENT

Hendrickson recommends technicians review The Technology & Maintenance Council’s publication (TMC) “Guidelines for Total Vehicle Alignment” (TMC RP 642).

Check total (front and rear) vehicle wheel alignment when any of the following occurs:
- Every 80,000 to 100,000 miles, or 12-18 months (normal maintenance).
- When the vehicle does not steer correctly.
- To correct a tire wear condition.

For rear wheel alignment specifications and adjustments refer to the vehicle manufacturer.

The AIRTEK front wheel alignment specifications can be found in the Alignment Specifications Section of this publication. There are two types of front wheel alignment:
1. **Minor alignment** – a minor front wheel alignment is done for all normal maintenance conditions, see below.
2. **Major alignment** – a major alignment is done when uneven or excessive tire wear is evident, or response at the steering wheel is sluggish, or the need for major wheel alignment check and adjustment is required, see below.

MINOR FRONT WHEEL ALIGNMENT

Perform the minor front wheel alignment in the following sequence:
1. Inspect all systems that affect wheel alignment. Refer to “Inspection Prior to Alignment” in this section.
2. Check the wheel bearing endplay.
3. Check and adjust toe.
4. Check and adjust the vehicle ride height as specified in the Preventive Maintenance Section of this publication.

MAJOR FRONT WHEEL ALIGNMENT

Be certain to follow wheel alignment inspection intervals as specified by the original equipment manufacturer. Before performing a major front wheel alignment it is recommended that alignment equipment calibration be checked to ensure proper vehicle alignment.

Major wheel alignment is accomplished in the following sequence of operation:
1. Inspect all the systems that influence the wheel alignment. Refer to “Inspection Prior to Alignment” in this section.
2. Check and adjust the maximum turn angle, refer to “Steering Stop Adjustment Procedure” in this section, see Figures 8-11 and 8-12.
3. If the vehicle is equipped with power steering, check the pressure relief in the power steering system and reset if necessary. Refer to vehicle manufacturer regarding the subject: Adjusting the Pressure Relief in the Power Steering System.
4. Check the turning angle. Refer to original equipment manufacturer specifications.

5. Check the kingpin (or steering axis) inclination, refer to “Kingpin Inclination” under the Alignment Definitions in this section.

WARNING

AXLE CAMBER IS NOT ADJUSTABLE. DO NOT CHANGE THE AXLE CAMBER ANGLE OR BEND THE AXLE BEAM. BENDING THE AXLE BEAM TO CHANGE THE CAMBER ANGLE CAN DAMAGE THE AXLE AND REDUCE AXLE STRENGTH, AND WILL VOID HENDRICKSON’S WARRANTY. A BENT AXLE BEAM CAN CAUSE LOSS OF VEHICLE CONTROL, POSSIBLY CAUSING PERSONAL INJURY OR PROPERTY DAMAGE, SEE FIGURE 8-13.

FIGURE 8-13

NOTE

Contact Hendrickson Tech Services for any questions regarding STEERTEK NXT integrated axle spring seats and / or fasteners.

6. Check camber angle. **DO NOT** attempt to adjust camber. Refer to “Camber” under the Alignment Definitions in this section.

7. It is necessary to verify that all ride heights (front and rear) are within specifications prior to checking caster to get an accurate caster reading.

8. Check and adjust caster angle. Refer to “Caster” under the Alignment Definitions in this section.

NOTE

The use of two different angle caster shims will not change cross caster. Cross caster is the difference between the caster readings for left and right side of the vehicle.

9. Check and adjust toe-in, refer to Toe Setting in the Alignment & Adjustment section.
RIDE HEIGHT VERIFICATION
■ DUAL HEIGHT CONTROL VALVES

NOTE
VOLVO VEHICLES BUILT WITH POST '07 ENGINE — The height control valves are not supplied by Hendrickson for vehicles equipped with Post '07 Engines, although it is a required component. Hendrickson is not responsible for components supplied by the vehicle manufacturer. For assistance with inspection, maintenance and rebuild instructions on these components contact the vehicle manufacturer.

NOTE
VOLVO VEHICLES BUILT BETWEEN 03/05 AND 12/07 — There are different reference ride heights measurements on the 12K/12.5K pound capacity and the 13.2K/14.6K pound capacity suspensions. Verify the suspension capacity, and use the proper ride height gauge.

Height Gauge for vehicles built AFTER July 2011 with STEERTEK NXT axle
■ Lit No. 45745-359 — 12,000 / 12,500 / 13,200 / 14,600 pound capacity

Height Gauges for vehicles built PRIOR to July 2011 with STEERTEK axle
■ Lit No. 45745-170 — 12,000 / 12,500 pound capacity
■ Lit No. 45745-195 — 13,200 / 14,600 pound capacity

DUAL RIDE HEIGHT VERIFICATION
1. Use a work bay with a level floor. Drive the vehicle slowly, straight ahead. Try to slacken or loosen the suspension as the vehicle is positioned. End with all the wheels positioned straight ahead. Try to roll to a stop without the brakes being applied.
2. Chock the drive wheels. DO NOT set parking brake.

WARNING
AIR SPRING ASSEMBLIES MUST BE DEFLATED PRIOR TO LOOSENING ANY CLAMP GROUP HARDWARE. UNRESTRICTED AIR SPRING ASSEMBLIES CAN VIOLENTLY SHIFT. DO NOT INFLATE AIR SPRING ASSEMBLIES WHEN THEY ARE UNRESTRICTED. AIR SPRING ASSEMBLIES MUST BE RESTRICTED BY SUSPENSION OR OTHER ADEQUATE STRUCTURE. DO NOT INFLATE BEYOND PRESSURES RECOMMENDED BY AIR SPRING MANUFACTURER, CONTACT HENDRICKSON TECHNICAL SERVICES FOR DETAILS. IMPROPER USE OR OVER INFLATION MAY CAUSE AIR SPRING ASSEMBLIES TO BURST, CAUSING PROPERTY DAMAGE AND/OR SEVERE PERSONAL INJURY.
3. Cycle the air system. Detach the upper rubber grommet(s) of the height control valve linkage(s) from the upper stud and exhaust the suspension system air by lowering the height control valve linkage arm.
4. Re-attach the upper grommet of the height control valve linkage onto the upper stud to fill the suspension system with air. Wait until the airflow to front air springs has stopped.
5. a. 12K/12.5K/13.2K/14.6K Capacity (Vehicles built after July 2011 with STEERTEK NXT axle) — Hold the ride height gauge part number 45745-359 vertically, see Figure 8-14. Place the gauge so that the upper notch feature is placed between the height control valve mounting bracket bolts and is flush against the bottom of the air spring bracket.
 b. 12K/12.5K Capacity (Vehicles built prior to July 2011 with STEERTEK axle) — Hold the ride height gauge part number 45745-170 vertically, see Figure 8-15. Place the gauge so that the upper notch feature is placed between the height control valve mounting bracket bolts and is flush against the bottom of the air spring bracket.
 c. 13.2K/14.6K Capacity (Vehicles built prior to July 2011 with STEERTEK axle) — Hold the ride height gauge part number 45745-195 vertically, see Figure 8-16. Place the gauge so that the upper notch feature is against the outboard side of the height control valve mounting bracket and is flush against the bottom of the upper air spring bracket.
6. The air spring piston flange edge should contact the lower region marked "ACCEPTABLE."

7. If the air spring piston flange edge contacts the "BELOW SPEC" region, the ride height is set too low and requires adjustment, see Figure 8-16. If the air spring piston flange contacts the "ABOVE SPEC" region, the ride height is set too high and requires adjustment.

If a gauge is not available, measure the suspension reference ride height on the front axle (air spring height). Measurement can be taken from the bottom of the upper air spring bracket to the bottom of the air spring piston flange.

- 12,000 and 12,500 pound capacity 77/8" ± 1/8"
- 13,200 and 14,600 pound capacity 81/8" ± 1/8"

ADJUSTMENT ALL DUAL HEIGHT CONTROL VALVE MODELS

1. Verify that the air system is at full operating pressure.

SERVICE HINT

It is very important that the leveling valve be cycled completely before and after any ride height adjustments. Cycling of the leveling valve will help make the adjustment more accurate.

WARNING

PRIOR TO AND DURING DEFLATION AND INFLATION OF THE FRONT AIR SUSPENSION SYSTEM, ENSURE THAT ALL PERSONNEL AND EQUIPMENT ARE CLEAR FROM UNDER THE VEHICLE AND AROUND THE SERVICE AREA. FAILURE TO DO SO CAN CAUSE SERIOUS PERSONAL INJURY, DEATH, OR PROPERTY DAMAGE.

2. See additional Air Spring Cautions and Warnings in the Important Safety Notice Section of this publication prior to deflating or inflating the suspension system.
3. Cycle the air system. Detach the upper rubber grommet(s) of the height control valve linkage(s) from the upper stud and exhaust the suspension system air by lowering the height control valve linkage arm.

4. Refill the suspension by raising the height control valve arm(s) by hand, so that the air springs are above the proper ride height.

5. Lower the leveling valve arm(s) to exhaust the air system until the suspension is at the proper ride height as measured on the correct height gauge.

6. Use a 1/8" wooden dowel rod (golf tee) to set the neutral position for the height control valve(s) by aligning the hole in the leveling arm(s) with the hole in the height control valve cover, as shown in Figure 8-17. **DO NOT** use a metal rod or nail as this may cause damage to the height control valve.

7. Adjust the height control valve by loosening the mounting locknuts and pivoting the valve body about the mounting bolt so the height control valve leveling arm stud inserts directly into the center of the hole on the rubber grommet(s) at the proper height. Check the rubber grommet(s) for any tearing or damage, replace as necessary.

8. Facing the air spring from the outboard side for the left side of the vehicle, pivot the valve body counter clockwise to increase the ride height and clockwise to decrease the ride height. For the right side of the vehicle, pivot the valve body clockwise to increase the ride height and counter clockwise to decrease the ride height.

9. Connect the height control valve arm(s) to the rubber grommet(s).

10. Tighten the mounting locknuts to manufacturer’s specifications after the adjustment is made, see Figure 8-18.

11. Install a 5 mm allen wrench in the bottom socket head cap screws to prevent the screws from turning while re-tightening the locknuts. Remove the dowel from the height control valve(s).

12. Cycle the height control valve leveling arm(s) as stated in Step number 2.

13. Recheck the ride height on both sides of the vehicle.

14. Repeat Steps 2 through 10 until the ride height is within specification.

NOTE
Hendrickson recommends the following be performed during any type of ride height adjustment to help prevent socket head cap screws from loosening from the height control valve housing, and any subsequent air leaks from the height control valve.

Prior to adjusting the height control valve, clean the threads of the mounting fasteners of any debris and corrosion.

NOTE
The above procedure should also be performed in the event an air leak is detected in the height control valve. If air continues to leak after the socket head cap screws have been properly re-tightened, the height control valve should be replaced.
SINGLE HEIGHT CONTROL VALVE

NOTE

Volvo vehicles built prior to 03/05 not equipped with dual height control valves — The reference ride height measurements are different on the 12K/12.5K pound capacity than the 13.2K/14.6K pound capacity suspensions. Verify the suspension capacity, and ensure the proper ride height gauge is used.

AIRTEK HEIGHT GAUGE

- Lit No. 45745-170 — 12,000 and 12,500 pound capacity
- Lit No. 45745-195 — 13,200 and 14,600 pound capacity

1. Drive the vehicle onto a level surface.
2. Free and center all suspension joints by slowly moving vehicle back and forth several times without using the brakes. **It is IMPORTANT when coming to a complete stop to make sure the brakes are released.**
3. Chock drive wheels.
4. Detach the upper rubber grommet of the height control valve linkage from the upper stud and exhaust the suspension system air by lowering the height control valve linkage arm.
5. Re-attach the upper grommet of the height control valve linkage onto the upper stud to fill the suspension system with air. Wait until the airflow to front air springs has stopped.
6. a. **12K/12.5K Capacity** — Hold the 45745-170 gauge vertically, see Figure 8-19. Place the gauge, so that the upper notch feature is placed between the height control valve bracket mounting bolts and is flush against the bottom of the air spring bracket.
 b. **13.2K/14.6K Capacity** — Hold the 45745-195 gauge upper notch feature against the outboard side of the height control valve mounting bracket and is flush against the bottom of the upper air spring bracket, see Figure 8-20.
7. The air spring piston flange edge should contact the lower region marked "ACCEPTABLE".
8. If the air spring piston flange edge contacts to the "BELOW SPEC" region, the ride height is set too low, see Figures 8-20 and 8-21. If the air spring piston flange contacts to the "ABOVE SPEC" region the ride height is set too high. If a gauge is not available, measure the suspension reference ride height on the front axle (air spring height). Measurement can be taken from the bottom of the upper air spring bracket to the bottom of the air spring piston flange.
 - 12,000 and 12,500 pound capacity $7\frac{7}{8}'' \pm \frac{1}{8}''$
 - 13,200 and 14,600 pound capacity $8\frac{1}{8}'' \pm \frac{1}{8}''$

FIGURE 8-19

12K/12.5K pound capacity
Vehicles built prior to July 2011
with STEERTEK axle

FIGURE 8-20

13.2K/14.6K pound capacity
Vehicles built prior to July 2011
with STEERTEK axle
ADJUSTMENT ALL SINGLE HEIGHT CONTROL VALVE MODELS
Hendrickson recommends the following be performed during any type of ride height adjustment to help prevent socket head cap screws from loosening from the height control valve housing, and any subsequent air leaks from the height control valve.

1. Prior to adjusting the height control valve, clean the threads of the mounting fasteners of any debris and corrosion.
 - The above procedure should also be performed in the event an air leak is detected in the height control valve. If air continues to leak after the socket head cap screws have been properly re-tightened, the height control valve should be replaced.

SERVICE HINT
It is very important that the leveling valve be cycled completely before and after any ride height adjustments. Cycling of the leveling valve will help make the adjustment more accurate.

2. See additional Air Spring Cautions and Warnings in the Important Safety Notice Section of this publication prior to deflating or inflating the suspension system.

3. Detach the upper grommet of the height control valve linkage from the upper stud and exhaust suspension system air.

4. Adjust the height control valve by loosening the mounting locknuts and pivoting the valve body about the mounting bolt.

5. Facing the air spring from the outboard side of the vehicle, pivot the valve body counter clockwise to increase the ride height and clockwise to decrease the ride height.

6. After the adjustment is made, install an allen wrench in the bottom socket head cap screws on the height control valve housing to prevent the screws from turning while re-tightening the locknuts.

7. Tighten the mounting locknuts to vehicle manufacturer’s specifications, see Figure 8-21.

8. Repeat Steps 2 through 8 until the air spring piston flange aligns into the "ACCEPTABLE" region of the gauge, see Figures 8-19 and 8-20.

9. An easy way to remember the correct rotation of the valve is: Counter–clock–wise to lift, clockwise to reduce.

STEERING STOP

ADJUSTMENT PROCEDURE
When the axle or lower steering knuckle is replaced, the steering stop adjustment must be checked.

WARNING
ALWAYS CHECK/RESET THE STEERING GEAR BOX POPPET WHEN THE WHEEL CUT IS DECREASED. FOLLOW MANUFACTURER’S GUIDELINES FOR THE GEAR BOX POPPET RESETTING PROCEDURE. FAILURE TO DO SO CAN RESULT IN PREMATURE FAILURE OF THE AXLE OR STEERING KNUCKLE. THIS CONDITION CAN CAUSE LOSS OF VEHICLE CONTROL, POSSIBLE PERSONAL INJURY OR PROPERTY DAMAGE AND VOID ANY APPLICABLE WARRANTY.

1. Drive the vehicle on turntables and chock the rear wheels.

2. Measure the wheel cut. The wheel cut is determined by steering the tires. Wheel cut is measured at the inside wheel only, therefore the tires must be turned to the full lock position for each right hand and left hand direction. Refer to the vehicle manufacturer for exact specifications.
3. Increase the wheel cut by loosening the jam nuts and screw the axle stops in clockwise.

4. Tighten the jam nuts.

NOTE

It is very important that the sides of the square head axle stops are set parallel to the axle beam to ensure a good contact point on the axle, see Figure 8-22.

5. Decrease the wheel cut by loosening the jam nuts and screw the axle stops out counter-clockwise.

6. Tighten the jam nuts to 50 ± 10 foot pounds ($68 \pm 14 \text{ Nm}$).

7. Measure the wheel cut and check the tie rod clearance.

TOE SETTING

1. Place the vehicle on a level floor with the wheels in a straight ahead position.

2. Raise the vehicle and support the front axle with jack stands.

3. Use paint to mark the center area of tread on both steer axle tires around the complete outer diameter of the tires.

4. Scribe a line through both steer axle tires in the painted area around the complete outer diameter of the tires.

5. Raise the vehicle and remove the jack stands.

6. Set the vehicle on the ground.

NOTE

DO NOT measure toe-in with the front axle off the ground. The weight of the vehicle must be on the front axle when toe-in is measured.

7. Use a trammel bar and measure the distance between the scribe marks at the rear of the steer axle tires. Record the measurement.

8. Install the trammel bar and measure the distance between the scribe marks at the front of the steer axle tires. Record the measurement, see Figure 8-23.

NOTE

When setting up the trammel bar the pointers should be level with the spindles at the front and rear of the steer axle tires.

9. To calculate the toe setting, subtract the front measurement from the rear measurement; the difference between the two will equal the toe-in/toe-out measurement.

10. If the toe measurement is not within the specifications of $0.060" \pm 0.007" \pm 0.060"$, it will be necessary to adjust the toe setting. Refer to the following procedure.

 a. Loosen the tie rod cross tube clamp bolts and locknuts.

 b. Turn the tie rod cross tube until the specified toe-in distance is achieved.

 c. Tighten the bolt and locknut on the tie rod cross tube to 68 ± 8 foot pounds ($92 \pm 11 \text{ Nm}$) torque.

WARNING

THE THREADED PORTION OF THE TIE ROD END MUST EXTEND PAST THE SLOTS INTO THE TIE ROD CROSS TUBE, SEE FIGURE 8-24. FAILURE TO DO SO CAN CAUSE COMPONENT TO FAIL CAUSING LOSS OF VEHICLE CONTROL AND POSSIBLE PERSONAL INJURY OR PROPERTY DAMAGE.
FIGURE 8-23

Front

Trammel Bar

Trammel Bar Pointers

Scribe Marks

FIGURE 8-24

5/8" Tie Rod Clamp Bolt
It is critical to check the 5/8" tie rod clamp bolt head location to verify the clamp fasteners have sufficient clearance away from the lower shock mount at full wheel cut. The fasteners must not contact the lower shock mount. Failure to do so can cause one or more components to fail causing loss of vehicle control and possible personal injury or property damage.

11. Verify the 5/8" tie rod clamp bolt head does not contact the lower shock mount at full wheel cut, see Figure 8-24.

12. Repeat Steps 1-10 until the correct toe setting is achieved.

SPIRNG EYE RE-TOURQUE
This re-torque procedure is necessary when replacing the:
- Front hanger, shackle bracket and the steel leaf spring

RE-TOURQUE PROCEDURE
1. Chock the wheels.
2. Verify ride height.
3. Loosen the four (4) adapter locknuts.
4. Loosen the two (2) front spring eye locknuts.

5. Loosen the four (4) shackle locknuts. **DO NOT** loosen the shackle spacer bolt, see Figure 8-25.

NOTE
DO NOT remove the front or rear spring eyebolts.

FIGURE 8-25

6. Let the vehicle settle to ride height.
7. Tighten the front M20 spring eye bolt heads to vehicle manufacturer’s specifications.
8. Tighten the rear M20 spring eye bolt and shackle stop bolt heads to **400 ± 60** foot pounds (542 ± 81 Nm) torque.
9. Tighten the adapter bolts to the manufacturer’s specification.
10. Affix a straight edge to the bottom of the frame rail in front of the air spring, see Figure 8-26.
11. With the vehicle on a level surface measure the distance from the top of the straight edge to the ground on both sides of the vehicle and record the measurements.
12. Measure the difference from one side to the other.
13. Do a road test and repeat measurement Steps 10 to 12.
14. If the difference in measurement from one side to the other is less than 11 mm, the vehicle is level. If measurement difference is more than 11 mm, contact Hendrickson Tech Services.
15. Remove wheel chocks.
SECTION 9
Component Replacement

FASTENERS
Hendrickson recommends that when servicing the vehicle to replace the removed fasteners with new equivalent fasteners for AIRTEK and STEERTEK NXT / STEERTEK components. Maintain correct torque values at all times. Check torque values as specified. See Hendrickson’s Torque Specifications Section of this publication. If non-Hendrickson fasteners are used follow the torque specifications listed in the vehicle manufacturer's service manual.

HEIGHT CONTROL VALVE
Volvo vehicles built after 12/07 — The height control valve is not supplied by Hendrickson for vehicles equipped with Post '07 Engine, although it is a required component. Hendrickson is not responsible for components supplied by the vehicle manufacturer. For assistance with inspection, maintenance and rebuild instructions on these components see vehicle manufacturer.

Volvo vehicles built prior to 12/07 — This procedure is for servicing height control valve supplied by Hendrickson. Contact the vehicle manufacturer for instructions when servicing a height control valve not supplied by Hendrickson.

Prior to March 2005, some Volvo vehicle configurations required dual height control valves. Since March 2005 all Volvo vehicles equipped with the AIRTEK suspension have been and continue to be equipped with dual height control valves.

DISASSEMBLY
1. Drain the air from the secondary air tank.

WARNING
PRIOR TO AND DURING DEFLATION AND INFLATION OF THE FRONT AIR SUSPENSION SYSTEM, ENSURE THAT ALL PERSONNEL AND EQUIPMENT ARE CLEAR FROM UNDER THE VEHICLE AND AROUND THE SERVICE AREA, FAILURE TO DO SO CAN CAUSE SERIOUS PERSONAL INJURY, DEATH, OR PROPERTY DAMAGE.

2. See additional Air Spring Cautions and Warnings in the Important Safety Notice Section of this publication prior to deflating or inflating the suspension system.

3. Deflate the air springs by removing the height control valve linkage(s) at the rubber grommet(s) and lowering the height control linkage arm(s). This will exhaust the air pressure in the air springs.

CAUTION
The push-to-connect fittings on AIRTEK air springs and height control valves are non-serviceable. It is necessary to clean the dirt and debris away from the push-to-connect fittings and the air lines to help prevent any foreign material from entering the air spring, air system or damaging the push-to-connect fittings. Clean push-to-connect fittings using soapy water and a soft bristled brush and dry with compressed air.

4. Remove the air lines from the height control valve(s), see Figure 9-1. The air lines are push-to-connect. Push in on the air line to release tension, push down on the collar and pull out the air line.

5. Remove the two mounting locknuts and washers.

6. Remove the height control valve.
ASSEMBLY

1. Attach the height control valve on the mounting bracket as shown in Figure 9-1.

2. Attach the washers and the locknuts. DO NOT tighten the locknuts to specified torque until after the proper ride height is attained. Mount the height control valve parallel to the flange of the upper air spring bracket, see Figure 9-1.

SERVICE HINT
When replacing or installing nylon air line tubing into quick-connect fittings it is critical that the end of the air line is cut square. Improper cut of the end of the air line tubing can cause the air line to seat improperly in the quick connect fitting causing air leakage.

3. Attach the air lines to the height control valve(s), see Figure 9-2.

4. Install the height control valve linkage assembly(s).

5. Adjust the height control valve(s) to proper specifications (refer to the Alignment & Adjustments Section of this publication for proper ride height adjustment) as determined by axle capacity:
 - 12,000 and 12,500 pound capacity 7\(\frac{7}{8}\)" ± \(\frac{1}{8}\)"
 - 13,200 and 14,600 pound capacity 8\(\frac{1}{8}\)" ± \(\frac{1}{8}\)"

6. Tighten the locknuts to 9 ± 1 foot pounds (12 Nm) torque, see Figure 9-3.

AIR SPRING

■ 12,000/12,500 Pound Capacity

SERVICE NOTE
Volvo vehicles built between March 2005 and June 2007 equipped with dual height control valves must use Air Spring with Support Plate Service Kit No. 60961-182. Refer to Hendrickson Assembly Instruction literature number 59310-040 for more information.

NOTE
Prior to March 2005, some Volvo vehicle configurations required dual height control valves. As of March 2005 all Volvo vehicles equipped with the AIRTEK suspension have been and continue to be equipped with dual height control valves.
DISASSEMBLY

1. Place the vehicle on level floor.
2. Chock the wheels.
3. Support the frame with frame stands.

WARNING

WHEN SERVICING THE VEHICLE OR ATTACHING AN AIR SPRING AND THE VEHICLE IS ON THE GROUND, PRIOR TO Airing THE SUSPENSION SYSTEM MAKE CERTAIN THE AIR SPRING LOCATOR IS INDEXED INTO THE UPPER AIR SPRING BRACKET PROPERLY, AND THE AIR SPRING IS FULLY SEATED ON THE TOP PAD. FAILURE TO FOLLOW THESE INSTRUCTIONS CAN RESULT IN PREMATURE AIR SPRING FAILURE, CAUSE PERSONAL INJURY, OR PROPERTY DAMAGE.

WARNING

PRIOR TO AND DURING DEFLATION AND INFLATION OF THE FRONT AIR SUSPENSION SYSTEM, ENSURE THAT ALL PERSONNEL AND EQUIPMENT ARE CLEAR FROM UNDER THE VEHICLE AND AROUND THE SERVICE AREA. FAILURE TO DO SO CAN CAUSE SERIOUS PERSONAL INJURY, DEATH, OR PROPERTY DAMAGE.

4. See additional Air Spring Cautions and Warnings in the Important Safety Notice Section of this publication prior to deflating or inflating the suspension system.

5. Exhaust the air from the system:
 - **Volvo vehicles built with Post '07 Engine** are equipped with the vehicle manufacturer's height control valves – exhaust the air from the system per the vehicle manufacturer's guidelines.
 - **Volvo vehicles built with Pre '07 Engine** are equipped with Hendrickson height control valve(s) — exhaust the air from the air system by disconnecting the height control valve linkage(s) at the rubber grommet(s) and allowing the lever to drop. This will exhaust air from the system.

CAUTION

IF THE AIR SPRING IS TO BE RE-INSTALLED; INSPECT LOCK-TABS FOR DAMAGE OR CRACKS PRIOR TO RE-INSTALLATION. CARE MUST BE TAKEN TO REMOVE DIRT AND DEBRIS FROM THE PUSH-TO-CONNECT FITTING. FAILURE TO DO SO COULD RESULT IN THE PUSH-TO-CONNECT FITTING FAILING TO SEAL WITH THE AIR LINE.

6. Disconnect the air line to the air spring.
7. Raise the frame to allow for air spring removal.
8. Separate the air spring from the upper air spring bracket by applying downward pressure on air spring, see Figure 9-4, pushing outward on the lock-tabs outside the bracket, and inward on inlet lock-tabs, see Figure 9-6. This will dislodge the air spring from the upper air spring bracket.
9. Apply upward pressure between the base of the air spring and the top pad. This will dislodge the air spring from the top pad, see Figure 9-5.

10. Remove the air spring.

FIGURE 9-4

FIGURE 9-5
ASSEMBLY

1. Insert the air spring into the top pad. Verify the lock tabs click in place.
2. Compress the air spring and slide into vertical position. There is a locating nodule on the air spring to index the position in the upper air spring bracket.
3. Pull the air spring up into the upper air spring bracket until the air spring snaps into place. Verify all four lock-tabs are engaged, see Figure 9-6.

SERVICE HINT

When replacing or installing nylon air line tubing into quick-connect fittings it is critical that the end of the air line is cut square. Improper cut on the end of the air line tubing can cause the air line to seat improperly in the quick connect fitting causing air leakage.

4. Install the air line into the air spring.

WARNING

WHEN SERVICING VEHICLE OR ATTACHING AN AIR SPRING AND THE VEHICLE IS ON THE GROUND, PRIOR TO AIRING UP THE SUSPENSION SYSTEM MAKE CERTAIN THE AIR SPRING LOCATOR IS INDEXED INTO THE UPPER AIR SPRING BRACKET PROPERLY, THE LOCK TABS ARE SNAPED INTO PLACE, AND THE AIR SPRING IS FULLY SEATED ON THE AIR SPRING BRACKET AND TOP PAD. RESULT IN PREMATURE AIR SPRING FAILURE AND CAUSE PERSONAL INJURY, OR PROPERTY DAMAGE.

5. Air up the suspension.
6. Check the air spring for leaks.
7. Check the ride height and adjust if necessary. Refer to the Alignment & Adjustments Section of this publication for the proper ride height adjustment.
8. Remove the wheel chocks.

■ 13,200 & 14,600 Pound Capacity

DISASSEMBLY

1. Place vehicle on level floor.
2. Chock the wheels.
3. Support the frame with frame stands.

WARNING

PRIOR TO AND DURING DEFLATION AND INFLATION OF THE FRONT AIR SUSPENSION SYSTEM, ENSURE THAT ALL PERSONNEL AND EQUIPMENT ARE CLEAR FROM UNDER THE VEHICLE AND AROUND THE SERVICE AREA, FAILURE TO DO SO CAN CAUSE SERIOUS PERSONAL INJURY, DEATH, OR PROPERTY DAMAGE.

4. See additional Air Spring Cautions and Warnings in the Important Safety Notice Section of this publication prior to deflating or inflating the suspension system.
5. Exhaust the air from the system:

Volvo vehicles built with Post '07 Engine are equipped with the vehicle manufacturer’s height control valves — exhaust the air from the system per the vehicle manufacturer’s guidelines.

Volvo vehicles built with Pre '07 Engine are equipped with Hendrickson height control valve(s) — exhaust the air from the system by disconnecting the height control valve linkage(s) at the rubber grommet(s) and allowing the lever to drop. This will exhaust air from the system.
NOTE

Prior to March 2005, some Volvo vehicle configurations required dual height control valves. As of March 2005 all Volvo vehicles equipped with the AIRTEK suspension have been and continue to be equipped with dual height control valves.

6. Disconnect the air line(s) from the air spring(s).
7. Remove the M20 locknut from the top of the air spring and the M12 locknut and air spring adapter from the bottom of the air spring, see Figure 9-8.
8. Remove the air spring.

ASSEMBLY

1. Insert the air spring into the top pad. Index the air spring adapter into the bottom of the top pad, see Figure 9-7. Verify that the air spring adapter notch is properly indexed into the notch in the bottom of the top pad.

CAUTION

IT IS CRITICAL THAT THE AIR SPRING ADAPTER BE FULLY SEATED INTO THE BOTTOM OF THE TOP PAD. FAILURE TO FOLLOW THESE INSTRUCTIONS COULD RESULT IN PREMATURE AIR SPRING AND/OR AIR SPRING HARDWARE FAILURE AND VOID ANY APPLICABLE WARRANTY.

2. Install the bottom M12 washer and locknut. Hand tighten, DO NOT tighten to torque at this time.
3. Compress the air spring and insert into the upper air spring bracket in the proper orientation, and install the upper M20 locknut. The air spring stud is indexed through the air spring bracket and the height control valve bracket, see Figure 9-8. Tighten to the vehicle manufacturer’s torque specifications.
4. Tighten the lower air spring M12 locknut to the vehicle manufacturer’s torque specifications, see Figure 9-8.
5. Install the air line(s) into the air spring(s).
6. Install the height control valve linkage and inflate the suspension to normal operating pressure.
7. Check the air spring for leaks.
8. Check the ride height and adjust if necessary. Refer to Alignment & Adjustments Section of this publication for the proper ride height adjustment.
9. Remove the wheel chocks.
RUBBER AXLE STOP

REMOVAL
1. Insert a small pry bar between the rubber axle stop and the inside of the bump stop pedestal.
2. Apply downward force on the pry bar and pull the rubber axle stop out of the bump stop pedestal, see Figure 9-9.
3. Inspect the bump stop pedestal and frame rail flange for any contact damage.
4. Clean any debris from inside the bump stop pedestal.

INSTALLATION
1. Lubricate the new rubber axle stop with soapy water.
2. Install the rubber axle stop in the bump stop pedestal.
3. Apply downward force on the rubber axle stop until it is seated firmly in the bump stop pedestal.

FRONT LEAF SPRING HANGER
The front leaf spring hangers are furnish by vehicle manufacturer. Please refer to the vehicle manufacturer’s maintenance manual for replacement instructions.

SHACKLE BRACKET

DISASSEMBLY
1. Chock the wheels.
2. Support the frame with frame stands.

Prior to and during deflation and inflation of the front air suspension system, ensure that all personnel and equipment are clear from under the vehicle and around the service area, failure to do so can cause serious personal injury, death, or property damage.

3. See additional Air Spring Cautions and Warnings in the Important Safety Notice Section of this publication prior to deflating or inflating the suspension system.
4. Exhaust the air from the system:
 - Volvo vehicles built with Post ’07 Engine are equipped with the vehicle manufacturer’s height control valves – exhaust the air from the system per the vehicle manufacturer’s guidelines.
 - Volvo vehicles built with Pre ’07 Engine are equipped with Hendrickson height control valve(s) — exhaust the air from the air system by disconnecting the height control valve linkage(s) at the rubber grommet(s) and allowing the lever to drop. This will exhaust air from the system.
5. Disconnect the air lines from air springs.
6. Remove the rear M20 spring eye, shackle pivot and shackle stop bolts, washers and locknuts. Remove the shackle stop spacer.

SERVICE HINT
A bottle jack may be required to raise the axle slightly to facilitate removal of the rear spring eye bolt.
7. Remove the hardware from the shackle bracket. See vehicle manufacturer’s guidelines.
8. Remove the Shackle bracket from the vehicle, see Figure 9-10.

9. Inspect the shackle assembly and both thrust washers (if equipped) for excessive wear or damage. See thrust washer inspection in the Preventive Maintenance Section of this publication.

10. If damaged or worn excessively, replace with Hendrickson Genuine Parts as detailed in Component Replacement Section of this publication.

FIGURE 9-10

ASSEMBLY
1. Install the shackle bracket on the frame.
2. Install new hardware. Follow the vehicle manufacturer’s guidelines.
3. Install the thrust washers (if equipped), shackle plates and shackle stop bolt, shackle stop spacer assembly with the M20 bolts, washers and locknuts, see Figure 9-10.
4. Remove the frame stands and lower frame.
5. Install the air lines into the air springs.
6. Install the height control valve linkage and inflate the suspension to normal operating pressure (ride height).
7. Tighten the M20 bolt heads to 400 ± 60 ft. lbs at the bolt head.
8. Remove the wheel chocks.

THRUST WASHERS (If equipped)

- Vehicles built with STEERTEK axle prior to July 2011

DISASSEMBLY
1. Chock the wheels.

WARNING

PRIOR TO AND DURING DEFLATION AND INFLATION OF THE FRONT AIR SUSPENSION SYSTEM, ENSURE THAT ALL PERSONNEL AND EQUIPMENT ARE CLEAR FROM UNDER THE VEHICLE AND AROUND THE SERVICE AREA, FAILURE TO DO SO CAN CAUSE SERIOUS PERSONAL INJURY, DEATH, OR PROPERTY DAMAGE.

2. See additional Air Spring Cautions and Warnings in the Important Safety Notice Section of this publication prior to deflating or inflating the suspension system.
3. Exhaust the air from the system:

Volvo vehicles built with Post '07 Engine are equipped with the vehicle manufacturer's height control valves – exhaust the air from the system per the vehicle manufacturer's guidelines.
Volvo vehicles built with Pre ‘07 Engine are equipped with Hendrickson height control valve(s) — exhaust the air from the air system by disconnecting the height control valve linkage(s) at the rubber grommet(s) and allowing the lever to drop. This will exhaust air from the system.

4. Remove the air lines from the air springs.
5. Support the frame with frame stands.
6. Remove the M20 spring eye, shackle pivot and shackle stop bolts, washers and locknuts. Remove the shackle stop spacer.
7. Remove the shackle plates and thrust washers, see Figure 9-10.

SERVICE HINT

A bottle jack may be required to raise the axle slightly to facilitate removal of the rear spring eye bolt.

ASSEMBLY

1. Raise the axle.
2. Install the NEW thrust washers, shackle plates and shackle stop spacer with the M20 bolts, washers and locknuts.
3. Remove frame stands and lower the frame.
4. Install air lines into the air springs.
5. Install the height control valve linkage and inflate the suspension to normal operating pressure.
6. Tighten the M20 at the bolt heads to 400 ± 60 foot pounds (542 ± 81 Nm) torque, see Figure 9-10.
7. Remove the wheel chocks.

LEAF SPRING

DISASSEMBLY

1. Place the vehicle on a level floor.
2. Chock the wheels.

WARNING

PRIOR TO AND DURING DEFLATION AND INFLATION OF THE FRONT AIR SUSPENSION SYSTEM, ENSURE THAT ALL PERSONNEL AND EQUIPMENT ARE CLEAR FROM UNDER THE VEHICLE AND AROUND THE SERVICE AREA, FAILURE TO DO SO CAN CAUSE SERIOUS PERSONAL INJURY, DEATH, OR PROPERTY DAMAGE.

3. See additional Air Spring Cautions and Warnings in the Important Safety Notice Section of this publication prior to deflating or inflating the suspension system.

4. Exhaust the air from the system:

Volvo vehicles built with Post ‘07 Engine are equipped with the vehicle manufacturer’s height control valves – exhaust the air from the system per the vehicle manufacturer’s guidelines.

Volvo vehicles built with Pre ‘07 Engine are equipped with Hendrickson height control valve(s) — exhaust the air from the air system by disconnecting the height control valve linkage(s) at the rubber grommet(s) and allowing the lever to drop. This will exhaust air from the system.

CAUTION

THE PUSH-TO-CONNECT FITTINGS ON AIRTEK AIR SPRINGS AND HEIGHT CONTROL VALVES ARE NON-SERVICEABLE. IT IS NECESSARY TO CLEAN THE DIRT AND DEBRIS AWAY FROM THE PUSH-TO-CONNECT FITTINGS AND THE AIR LINES TO HELP PREVENT ANY FOREIGN MATERIAL FROM ENTERING THE AIR SPRING, AIR SYSTEM OR DAMAGING THE PUSH-TO-CONNECT FITTINGS. CLEAN PUSH-TO-CONNECT FITTINGS USING SOAPY WATER AND A SOFT BRISTLED BRUSH AND DRY WITH COMPRESSED AIR.

5. Disconnect the air lines at the air springs.
6. Raise the vehicle.
7. Support the vehicle with frame stands.
8. Suspend the front axle to remove the load from leaf spring assembly.
9. Remove the air spring, see Air Spring Disassembly in this section.
10. Support the axle with a jack.
11. Remove the front and rear spring eyebolts and fasteners.

SERVICE HINT
To ease in the removal of the spring eyebolts it may be necessary to raise the axle slightly.

WARNING
AIR SPRING ASSEMBLIES MUST BE DEFLATED PRIOR TO LOOSENING ANY CLAMP GROUP HARDWARE. UNRESTRICTED AIR SPRING ASSEMBLIES CAN VIOLENTLY SHIFT. DO NOT INFLATE AIR SPRING ASSEMBLIES WHEN THEY ARE UNRESTRICTED. AIR SPRING ASSEMBLIES MUST BE RESTRICTED BY SUSPENSION OR OTHER ADEQUATE STRUCTURE. DO NOT INFLATE BEYOND PRESSURES RECOMMENDED BY AIR SPRING MANUFACTURER. CONTACT HENDRICKSON TECHNICAL SERVICES FOR DETAILS. IMPROPER USE OR OVER INFLATION MAY CAUSE AIR SPRING ASSEMBLIES TO BURST, CAUSING PROPERTY DAMAGE AND/OR SEVERE PERSONAL INJURY.

12. Remove the clamp group M20 Grade 8 locknuts and discard.

WARNING
DO NOT USE A CUTTING TORCH TO REMOVE CLAMP GROUP BOLTS OR ATTACHING FASTENERS. THE USE OF SUCH HEAT ON SUSPENSION COMPONENTS CAN ADVERSELY AFFECT THE STRENGTH OF THESE PARTS. A COMPONENT DAMAGED IN THIS MANNER CAN RESULT IN THE LOSS OF VEHICLE CONTROL AND POSSIBLE PERSONAL INJURY OR PROPERTY DAMAGE.

13. Remove the lower shock bolt.

WARNING
UNAUTHORIZED TAMPERING OF INTEGRATED AXLE SPRING SEATS CAN CAUSE COMPONENT AND STRUCTURAL DAMAGE AND RESULT IN LOSS OF VEHICLE CONTROL, SEVERE PERSONAL INJURY OR DEATH, PROPERTY DAMAGE, AND WILL VOID ANY APPLICABLE WARRANTY.

■ DO NOT REMOVE, MODIFY OR REPLACE INTEGRATED AXLE SPRING SEAT OR FASTENERS.

NOTE
Contact Hendrickson Tech Services for any questions regarding STEERTEK NXT axle spring seats and / or fasteners.

14. Volvo vehicles built with STEERTEK NXT axle
 a. Remove the top pad, galvanized liner from the leaf spring assembly, see Figure 9-11.
 b. Proceed to Step 16.

15. Volvo vehicles built with STEERTEK axle
 a. Remove the top pad, Z spacer (if equipped), galvanized liner and the bottom axle wrap, see Figure 9-11.

16. Remove the leaf spring assembly.

ASSEMBLY
1. Volvo vehicles built with STEERTEK NXT axle
 a. Install the new leaf spring assembly on the axle. Verify that the dowel pin is engaged properly in the axle spring seat, see Figure 9-11.
 b. Install the new galvanized liner and the top pad onto the leaf spring.
 c. Proceed to Step 3.
2. Volvo vehicles built with **STEERTEK axle**
 a. Install the new leaf spring and axle spacer onto the axle over dowel pin located on the top axle wrap, see Figure 9-11.
 b. Install the new galvanized liner and the top pad onto the leaf spring.
 c. Remove and replace the bottom axle wrap liner located in bottom axle wrap.
 d. Install the bottom axle wrap.
3. Install the new M20 clamp group fasteners. The locknuts must be replaced when the clamp group is removed to prevent premature bolt fatigue.
4. Snug the clamp group, **DO NOT** tighten at this time.
5. Raise the axle and the leaf spring assembly into the front hanger and rear shackle.
6. Install the M20 x 230 mm hex bolt in the front hanger. Snug bolt, **DO NOT** tighten at this time.
7. Install the M20 x 160 mm hex bolt in the shackle bracket. Snug bolt, **DO NOT** tighten at this time.
8. Volvo vehicles built with **STEERTEK NXT Axle**
 a. Ensure that the clamp group is properly aligned and the U-bolts are seated in the top pad, and the top pad is centered with the axle spring seat see Figure 9-12.
b. Tighten the clamp group locknuts evenly in 50 foot pounds (68 Nm) increments in the proper pattern to achieve uniform bolt tension, see Figure 9-13, to 350 ± 20 foot pounds (475 ± 27 Nm) torque.

c. Proceed to Step 11.

9. Volvo vehicles built with STEERTEK Axle
 a. Ensure that the clamp group is properly aligned and the U-bolts/Hex Bolts are seated in the top pad, and the bottom axle wrap is centered on the top axle wrap, see Figure 9-14.

 NOTE
 The clamp group U-bolt locknuts and hex bolt locknuts have the same torque value.
 b. Tighten the clamp group locknuts evenly in 50 foot pounds (68 Nm) increments in the proper pattern to achieve uniform bolt tension, see Figure 9-13, to 310 ± 20 foot pounds (420 ± 27 Nm) torque.

10. Install the air spring.
11. Remove the frame supports and load the front axle with the vehicle weight.
12. Install the air lines, and air up the vehicle.
13. Install the height control valve linkage and inflate the suspension to normal operating pressure (ride height).
14. Verify the vehicle is at the proper ride height. See Alignment and Adjustment Section of this publication.
15. Tighten the front spring eye M20 bolt head to 400 ± 60 foot pounds (542 ± 81 Nm) torque, see Figure 9-15.
16. Install and tighten the adapter bolts to vehicle manufacturer’s specification, see Figure 9-15.
17. Tighten the rear spring eye M20 bolt heads to 400 ± 60 foot pounds (542 ± 81 Nm) torque, see Figure 9-15.
18. Remove the wheel chocks.

FIGURE 9-15

* Specifications provided, controlled and subject to change by vehicle manufacturer.

FRONT AND REAR LEAF SPRING EYE BUSHINGS

The leaf spring eye bushings for the AIRTEK leaf spring are designed for extended service life. In the event of premature/excessive wear or damage to the bushings, careful consideration must be given to the contributing factors. Such factors must be corrected in order to help prevent the new bushings from sustaining similar premature/excessive wear or damage in the same manner. The front and rear bushings are not replaceable items. Therefore in the event of premature/excessive wear or damage, Hendrickson requires that the front leaf spring assembly be replaced.

SHOCK ABSORBER

NOTE

It is not necessary to replace the shock absorber in pairs if only one shock requires replacement.

DISASSEMBLY

1. Remove the upper and lower mounting fasteners per the vehicle manufacturer’s specifications.
2. Slide out the shock absorber, see Figure 9-16.
3. Inspect the shock absorber mounting brackets and hardware for damage or wear, replace as necessary.

ASSEMBLY

1. Install the shock absorber into the upper and lower mounting brackets.
2. Install the upper and lower shock mounting fasteners per the vehicle manufacturer’s specifications.
3. Tighten the upper and lower shock fasteners to the vehicle manufacturer’s torque specifications.
FIGURE 9-16

Vehicles built with STEERTEK NXT axle

- Shock Absorber
- *Lower Shock Locknut
- *HCV Bracket
- *Lower Shock Bolt
- Top Pad
- STEERTEK NXT Axle

Vehicles built with STEERTEK axle

- Shock Absorber
- *Lower Shock Bolt
- Top Pad
- *Flat Washer
- STEERTEK Axle

BOTTOM AXLE WRAP (If equipped)

- **Vehicles built with STEERTEK axle prior to July 2011**

DISASSEMBLY

1. Chock the wheels
2. Support the frame with frame stands.

WARNING

PRIOR TO AND DURING DEFLATION AND INFLATION OF THE FRONT AIR SUSPENSION SYSTEM, ENSURE THAT ALL PERSONNEL AND EQUIPMENT ARE CLEAR FROM UNDER THE VEHICLE AND AROUND THE SERVICE AREA, FAILURE TO DO SO CAN CAUSE SERIOUS PERSONAL INJURY, DEATH, OR PROPERTY DAMAGE.

3. See additional Air Spring Cautions and Warnings in the Important Safety Notice Section of this publication prior to deflating or inflating the suspension system.

WARNING

AIR SPRING ASSEMBLIES MUST BE DEFLATED PRIOR TO LOOSENING ANY CLAMP GROUP HARDWARE. UNRESTRICTED AIR SPRING ASSEMBLIES CAN VIOLENTLY SHIFT. DO NOT INFLATE AIR SPRING ASSEMBLIES WHEN THEY ARE UNRESTRICTED; AIR SPRING ASSEMBLIES MUST BE RESTRICTED BY SUSPENSION OR OTHER ADEQUATE STRUCTURE. DO NOT INFLATE BEYOND PRESSURES RECOMMENDED BY AIR SPRING MANUFACTURER, CONTACT HENDRICKSON TECHNICAL SERVICES FOR DETAILS. IMPROPER USE OR OVER INFLATION MAY CAUSE AIR SPRING ASSEMBLIES TO BURST, CAUSING PROPERTY DAMAGE AND/OR SEVERE PERSONAL INJURY.

4. Exhaust the air from the system:

- **Volvo vehicles built with Post '07 Engine** are equipped with the vehicle manufacturer's height control valves – exhaust the air from the system per the vehicle manufacturer's guidelines.

- **Volvo vehicles built with Pre '07 Engine** are equipped with Hendrickson height control valve(s) — exhaust the air from the system by disconnecting the height control valve linkage(s) at the rubber grommet(s) and allowing the lever to drop. This will exhaust air from the system.
WARNING

Do not use a cutting torch to remove clamp group bolts or attaching fasteners. The use of such heat on suspension components can adversely affect the strength of these parts. A component damaged in this manner can result in the loss of vehicle control and possible personal injury or property damage.

5. Remove the air spring on the side being replaced, see Air Spring Disassembly in this Section.
6. Remove the clamp group M20 U-bolts/hex bolts and locknuts, see Figure 9-17.
7. Remove the bottom axle wrap. It may be necessary to use a dead blow mallet to dislodge the axle wrap.
8. After removal, inspect the axle wrap for damage. Replace if necessary.
9. Discard the used bottom axle wrap liner.

ASSEMBLY

WARNING

Do not assemble clamp group without axle wrap liners. Failure to do so can cause loss of vehicle control, property damage or personal injury.

1. Install the new bottom axle wrap liner onto bottom axle wrap.
2. Install the bottom axle wrap onto the axle.
3. Install new M20 U-bolts/hex bolts (if removed) and locknuts. Ensure that the clamp group is properly aligned and the U-bolts/hex bolts are seated in the top pad, and the bottom axle wrap is centered on the top axle wrap, see Figure 9-17.

NOTE

The clamp group U-bolt locknuts and hex bolt locknuts have the same torque value.

FIGURE 9-17

Volvo vehicles built with U-BOLTS • Post '07 Engine

M20 Clamp Group Locknuts
Tightening Torque 310 ± 20 ft-lbs.

4. Tighten the clamp group locknuts evenly in 50 foot pounds (68 Nm) increments to 310 ± 20 foot pounds (420 ± 27 Nm) torque in the proper pattern to achieve uniform bolt tension, see Figure 9-18.

5. Install the air spring (if removed), see Air Spring Assembly in this section.
6. Remove the frame stands.
7. Remove the wheel chocks.
TOP AXLE WRAP IN CHASSIS (If equipped)

- **Vehicles built with STEERTEK axle prior to July 2011**

DISASSEMBLY

1. Chock the wheels
2. Support the frame with frame stands.

WARNING

PRIOR TO AND DURING DEFLATION AND INFLATION OF THE FRONT AIR SUSPENSION SYSTEM, ENSURE THAT ALL PERSONNEL AND EQUIPMENT ARE CLEAR FROM UNDER THE VEHICLE AND AROUND THE SERVICE AREA, FAILURE TO DO SO CAN CAUSE SERIOUS PERSONAL INJURY, DEATH, OR PROPERTY DAMAGE.

3. See additional Air Spring Cautions and Warnings in the Important Safety Notice Section of this publication prior to deflating or inflating the suspension system.

WARNING

AIR SPRING ASSEMBLIES MUST BE DEFLATED PRIOR TO LOOSENING ANY CLAMP GROUP HARDWARE. UNRESTRICTED AIR SPRING ASSEMBLIES CAN VIOLENTLY SHIFT. DO NOT INFLATE AIR SPRING ASSEMBLIES WHEN THEY ARE UNRESTRICTED. AIR SPRING ASSEMBLIES MUST BE RESTRICTED BY SUSPENSION OR OTHER ADEQUATE STRUCTURE. DO NOT INFLATE BEYOND PRESSURES RECOMMENDED BY AIR SPRING MANUFACTURER, CONTACT HENDRICKSON TECHNICAL SERVICES FOR DETAILS. IMPROPER USE OR OVER INFLATION MAY CAUSE AIR SPRING ASSEMBLIES TO BURST, CAUSING PROPERTY DAMAGE AND/OR SEVERE PERSONAL INJURY.

4. Exhaust the air from the system:

- Volkswagen vehicles built with Post ‘07 Engine are equipped with the vehicle manufacturer’s height control valves – exhaust the air from the system per the vehicle manufacturer’s guidelines.
- Volkswagen vehicles built with Pre ‘07 Engine are equipped with Hendrickson height control valve(s) — exhaust the air from the air system by disconnecting the height control valve linkage(s) at the rubber grommet(s) and allowing the lever to drop. This will exhaust air from the system.

5. Disconnect the air lines at the air springs.

6. Raise the vehicle and suspend the front axle to remove the load from the leaf spring.

7. Support the frame with frame stands.

8. Remove the air spring, see Air Spring Disassembly in this section.

9. Remove the front spring eyebolts and loosen shackle assembly fasteners. Remove the rear spring eyebolts.

SERVICE HINT

A bottle jack may be required to raise the axle slightly in order to remove spring eye bolt.

10. Support the axle with a jack.

WARNING

DO NOT USE A CUTTING TORCH TO REMOVE CLAMP GROUP BOLTS OR ATTACHING FASTENERS. THE USE OF SUCH HEAT ON SUSPENSION COMPONENTS CAN ADVERSELY AFFECT THE STRENGTH OF THESE PARTS. A COMPONENT DAMAGED IN THIS MANNER CAN RESULT IN THE LOSS OF VEHICLE CONTROL AND POSSIBLE PERSONAL INJURY OR PROPERTY DAMAGE.

11. Remove the M20 clamp group U-bolts/hex bolts and fasteners.

12. Remove the top pad, Z spacer (if equipped), the galvanized liner, and the bottom axle wrap.

13. Remove the lower shock mounting bolt.

14. Remove the spring assembly.
15. Strike the axle wrap with a dead blow mallet at the front and rear on the underside of the axle wrap to dislodge it from the axle, see Figure 9-19.
16. Clean and inspect the axle wrap and axle for cracks or damage, replace each if cracks or damage are present.

ASSEMBLY

WARNING

DO NOT ASSEMBLE CLAMP GROUP WITHOUT AXLE WRAP LINERS. FAILURE TO DO SO CAN CAUSE LOSS OF VEHICLE CONTROL, PROPERTY DAMAGE OR PERSONAL INJURY.

1. Install the new axle wrap liner on the axle.
2. Spray the axle wrap liner and the axle wrap with a silicon lubricant.
3. Position the axle wrap on the axle, see Figure 9-20.
4. Protect the top surface of the axle wrap with a block of wood, cardboard, or shop towels.

CAUTION

DO NOT STRIKE THE TOP AXLE WRAP WITH A HAMMER. HENDRICKSON RECOMMENDS USING A PLASTIC DEAD BLOW MALLET WITH CARE WHEN INSTALLING THE AXLE WRAP.

5. Using a dead blow mallet, drive the axle wrap onto the axle indexing the axle guide pin until the axle wrap is firmly seated on the axle.
6. Install the dowel pin into the axle wrap and Z spacer (if equipped).
7. Install the leaf spring on the axle wrap indexing the dowel pin.
8. Install the galvanized liner and the top pad on the leaf spring.
9. Remove and replace with a new bottom axle wrap liner.
10. Install the bottom axle wrap.
11. Install the new M20 clamp group bolts, washers, and the new locknuts.
12. Snug the clamp group, **DO NOT** torque at this time.
13. Use a jack and raise the axle and leaf spring assembly into the front spring hanger and shackle bracket.

SERVICE HINT

A bottle jack may be required to raise the axle slightly in order to install the spring eyebolts.

14. Install the M20 x 230 mm hex bolt in the front spring hanger.
15. Install the M20 x 160 mm hex bolt in the shackle bracket.
16. Ensure that the clamp group is properly aligned, the U-bolts/hex bolts are seated in the top pad, and the bottom axle wrap is centered on the top axle wrap, see Figure 9-21.

NOTE

The clamp group U-bolt locknuts and hex bolt locknuts have the same torque value.

17. Tighten the clamp group locknuts evenly in 50 foot pounds (68 Nm) increments to 310 ± 20 foot pounds (420 ± 27 Nm) torque in the proper pattern to achieve uniform bolt tension, see Figure 9-22.
18. Install the lower shock fasteners.
19. Tighten the fasteners to vehicle manufacturer’s torque specifications.
20. Remove the frame stands.
21. Remove the jack from the axle.
22. Attach air lines to the air springs.
23. Install the height control valve linkage and inflate the suspension to normal operating pressure.
24. Air up system to proper ride height, see Ride Height Adjustment in Alignment & Adjustments Section of this publication.
25. Tighten the front M20 spring eye bolt head to 400 ± 60 foot pounds (542 ± 81 Nm) torque.
26. Tighten the rear M20 shackle assembly bolt heads to 400 ± 60 foot pounds (542 ± 81 Nm) torque.
27. Tighten the adapter bolts in the front hanger to the vehicle manufacturer’s specifications.
28. Remove the wheel chocks.
FRONT AXLE ASSEMBLY

- **Vehicles built with STEERTEK NXT axle after July 2011**

 The axle clamp group consist of a top pad, U-bolts, washers and locknuts.

FIGURE 9-23

STEERTEK NXT

Volvo vehicles built with **STEERTEK NXT** axle after July 2011

12K SHOWN
STEERTEK NXT AXLE REMOVAL

■ Vehicles built with STEERTEK NXT axle after July 2011

AXLE DISASSEMBLY

Refer to Figure 9-23 when replacing the components of the STEERTEK NXT axle as shown.

⚠️ WARNING

DO NOT USE A TORCH ON CLAMP GROUP BOLTS OR ANY OTHER PART OF THE AIRTEK SUSPENSION. IF THE CLAMP GROUP BOLTS WILL NOT COME LOOSE WITH AN IMPACT WRENCH, USE A CUT OFF WHEEL AND CUT THE SHANK OF THE BOLT. THE USE OF A TORCH CAN CAUSE DAMAGE TO CERTAIN AIRTEK COMPONENTS THAT CAN RESULT IN THE LOSS OF VEHICLE CONTROL AND POSSIBLE PERSONAL INJURY OR PROPERTY DAMAGE.

1. Place the vehicle on level floor.
2. Chock the wheels.

⚠️ WARNING

PRIOR TO AND DURING DEFLATION AND INFLATION OF THE FRONT AIR SUSPENSION SYSTEM, ENSURE THAT ALL PERSONNEL AND EQUIPMENT ARE CLEAR FROM UNDER THE VEHICLE AND AROUND THE SERVICE AREA, FAILURE TO DO SO CAN CAUSE SERIOUS PERSONAL INJURY, DEATH, OR PROPERTY DAMAGE.

3. See additional Air Spring Cautions and Warnings in the Important Safety Notice Section of this publication prior to deflating or inflating the suspension system.

⚠️ WARNING

AIR SPRING ASSEMBLIES MUST BE DEFLATED PRIOR TO LOOSENING ANY CLAMP GROUP HARDWARE. UNRESTRICTED AIR SPRING ASSEMBLIES CAN VIOLENTLY SHIFT. DO NOT INFLATE AIR SPRING ASSEMBLIES WHEN THEY ARE UNRESTRICTED. AIR SPRING ASSEMBLIES MUST BE RESTRICTED BY SUSPENSION OR OTHER ADEQUATE STRUCTURE. DO NOT INFLATE BEYOND PRESSURES RECOMMENDED BY AIR SPRING MANUFACTURER, CONTACT HENDRICKSON TECHNICAL SERVICES FOR DETAILS. IMPROPER USE OR OVER INFLATION MAY CAUSE AIR SPRING ASSEMBLIES TO BURST, CAUSING PROPERTY DAMAGE AND/OR SEVERE PERSONAL INJURY.

4. Deflate the air springs. Exhaust the air from the system per the vehicle manufacturer’s guidelines.
5. Raise the vehicle.
6. Support the vehicle with frame stands and suspend the front axle with shocks attached.

⚠️ DANGER

THE INTEGRATED AXLE SPRING SEATS ON THE STEERTEK NXT AXLE ARE NON-SERVICEABLE. DO NOT REMOVE, MODIFY OR REPLACE INTEGRATED FASTENERS, DOING SO CAN CAUSE STRUCTURAL DAMAGE AND RESULT IN LOSS OF VEHICLE CONTROL, PROPERTY DAMAGE, SEVERE PERSONAL INJURY, OR DEATH AND VOID ANY APPLICABLE WARRANTY.

7. Remove the front wheels, hubs, brake shoes, ABS sensors and backing plate assembly.
8. Disconnect the drag link from the steering arm.

⚠️ CAUTION

IF THE AIR SPRING IS TO BE RE-INSTALLED: CARE MUST BE TAKEN TO REMOVE DIRT AND DEBRIS FROM THE PUSH–TO–CONNECT FITTING. FAILURE TO DO SO COULD RESULT IN THE PUSH–TO–CONNECT FITTING FAILING TO SEAL WITH THE AIR LINE. INSPECT LOCK-TABS FOR DAMAGE OR CRACKS PRIOR TO RE-INSTALLATION.

9. Unseat both of the air springs at the axle top pad.
10. Support the axle with a floor jack.

⚠️ WARNING

THE REPAIR OR RECONDITIONING OF SUSPENSION OR AXLE COMPONENTS IS NOT ALLOWED. ANY SUSPENSION OR AXLE COMPONENTS FOUND TO BE DAMAGED OR OUT OF SPECIFICATIONS MUST BE REPLACED. ALL MAJOR HENDRICKSON COMPONENTS ARE HEAT TREATED AND TEMPERED. AIRTEK COMPONENTS CANNOT BE BENT, WELDED, HEATED, OR REPAIRED WITHOUT REDUCING THE STRENGTH OR LIFE OF THE COMPONENT. FAILURE TO FOLLOW THESE GUIDELINES CAN CAUSE LOSS OF VEHICLE CONTROL, POSSIBLE PERSONAL INJURY, DEATH, OR PROPERTY DAMAGE AND WILL VOID APPLICABLE WARRANTIES.

11. Remove the top pad.
12. Disconnect and remove the lower shock mounting bolts.
13. Remove the M20 clamp group U-bolts and fasteners.
14. Lower the axle and remove from the vehicle.

■ STEERTEK NXT AXLE (Removed from Chassis)

AXLE REMOVAL
1. Remove the tie rod assembly. See Tie Rod Disassembly in this section.

WARNING
REMOVAL OF THE CAP SCREWS WILL ALLOW THE STEERING KNUCKLE TO SEPARATE FROM THE AXLE. THE STEERING KNUCKLE MUST BE SUPPORTED BEFORE REMOVAL OF THESE TWO (2) CAP SCREWS. FAILURE TO DO SO CAN CAUSE COMPONENT DAMAGE OR PERSONAL INJURY.
2. Remove the two 5/8” socket head cap screws from the steering knuckle assembly.
3. Remove the steering knuckle, thrust bearing, and shim pack if equipped.
4. After complete removal of the one side, repeat Steps 1-3 for the opposite side of the axle.
5. Inspect the steering kingpin bushings for excessive wear. If worn, replace the kingpin bushings and seals. Refer to the Kingpin Bushing component replacement instructions in this section.

AXLE INSTALLATION
1. Place the new axle on the floor jack and position the axle under the vehicle.
2. Raise the axle into position. Care must be taken at this point to ensure that the front leaf spring assembly’s center bolt aligns with the axle spring seat; see Figure 9-24.
3. Install the galvanized liner between the main spring and the top pad, see Figure 9-24. The top pad is installed with the air spring bores positioned outboard.
4. Install the new clamp group U-bolts and the new locknuts. Snug the bolts, **DO NOT** tighten to torque at this time.
5. Ensure that the clamp group is properly aligned and the U-bolts are seated in the top pad, and the top pad is centered on the axle spring seat, see Figure 9-25.
6. Snug the clamp group fasteners to 100 foot pounds (136 Nm) pre-torque.
7. Install the steering knuckles. Refer to the Steering Knuckle Assembly instructions in this section.
8. Install the tie rod assembly in the Ackermann arms.
9. Install the 7/8" hardened washers on the lower steering knuckle arm and the castle nuts. Tighten the castle nuts to 185 foot pounds (251 Nm), then rotate until the first castle slot lines up with the cotter pin bore in the tie rod end. **DO NOT** back off nut for cotter pin installation.
10. Install the tie rod end cotter pins.
11. Connect the drag link in the steering arms.
12. Install the castle nut on the drag link taper stud. Tighten the castle nut to 185 foot pounds, (251 Nm) then rotate until the first castle slot lines up with the cotter pin bore in the drag link. **DO NOT** back off nut for cotter pin installation.
13. Install the drag link cotter pin.
14. Install the lower shock mounting bolts, washers and locknuts and tighten to vehicle manufacturer's torque specifications.
15. Install the brake spider assemblies.
16. Install the brakes, hubs, and wheels as per manufacturer's guidelines.
17. Raise the vehicle and remove the safety stands.
18. Lower the floor jack and load the front axle with the truck’s weight. Remove the floor jack.
19. Tighten the clamp group locknuts evenly in 50 foot pounds (68 Nm) increments to 350 ± 20 foot pounds (475 ± 27 Nm) torque in the proper pattern to achieve uniform bolt tension, see Figure 9-26.
20. See Air Spring Cautions and Warnings in the Important Safety Notice Section of this publication prior to deflating or inflating the air system.
21. Reconnect the height control valve linkage and air up the system.
22. Check the ride height, adjust as necessary. Refer to the Alignment & Adjustments Section of this publication.
23. Remove the wheel chocks.
24. Fill the hubs with the proper lube, see the vehicle manufacturer’s guidelines for recommended lubrication, if required.
25. Grease the front steering components; refer to the lubrication guidelines in the Preventive Maintenance Section of this publication.
FRONT AXLE ASSEMBLY

- Vehicles built with STEERTEK axle prior to July 2011

The axle clamp group consist of top axle wrap, bottom axle wrap, top axle wrap liner, bottom axle wrap liner, top pad, M20 bolts, washers and locknuts

FIGURE 9-27
STEERTEK AXLE REMOVAL

- Vehicles built with STEERTEK axle prior to July 2011

AXLE DISASSEMBLY

Refer to Figure 9-27 when replacing the components of the STEERTEK axle as shown.

WARNING

DO NOT USE A TORCH ON CLAMP GROUP BOLTS OR ANY OTHER PART OF THE AIRTEK SUSPENSION. IF THE CLAMP GROUP BOLTS WILL NOT COME LOOSE WITH AN IMPACT WRENCH, USE A CUT OFF WHEEL AND CUT THE SHANK OF THE BOLT. THE USE OF A TORCH CAN CAUSE DAMAGE TO CERTAIN AIRTEK COMPONENTS THAT CAN RESULT IN THE LOSS OF VEHICLE CONTROL AND POSSIBLE PERSONAL INJURY OR PROPERTY DAMAGE.

1. Place the vehicle on level floor.
2. Chock the wheels.

WARNING

PRIOR TO AND DURING DEFLATION AND INFLATION OF THE FRONT AIR SUSPENSION SYSTEM, ENSURE THAT ALL PERSONNEL AND EQUIPMENT ARE CLEAR FROM UNDER THE VEHICLE AND AROUND THE SERVICE AREA, FAILURE TO DO SO CAN CAUSE SERIOUS PERSONAL INJURY, DEATH, OR PROPERTY DAMAGE.

3. See additional Air Spring Cautions and Warnings in the Important Safety Notice Section of this publication prior to deflating or inflating the suspension system.

WARNING

AIR SPRING ASSEMBLIES MUST BE DEFLATED PRIOR TO LOOSENING ANY CLAMP GROUP HARDWARE. UNRESTRICTED AIR SPRING ASSEMBLIES CAN VIOLENTLY SHIFT. DO NOT INFLATE AIR SPRING ASSEMBLIES WHEN THEY ARE UNRESTRICTED. AIR SPRING ASSEMBLIES MUST BE RESTRICTED BY SUSPENSION OR OTHER ADEquate STRUCTURE. DO NOT INFLATE BEYOND PressURES RECOMMENDED BY AIR SPRING MANUFACTURER, CONTACT HENDRICKSON TECHNICAL SERVICES FOR DETAILS. IMPROPER USE OR OVER INFLATION MAY CAUSE AIR SPRING ASSEMBLIES TO BURST, CAUSING PROPERTY DAMAGE AND/OR SEVERE PERSONAL INJURY.

4. Exhaust the air from the system:
 - Volvo vehicles built with Post '07 Engine are equipped with the vehicle manufacturer’s height control valves – exhaust the air from the system per the vehicle manufacturer’s guidelines.
 - Volvo vehicles built with Pre '07 Engine are equipped with Hendrickson height control valve(s) — exhaust the air from the air system by disconnecting the height control valve linkage(s) at the rubber grommet(s) and allowing the lever to drop. This will exhaust air from the system.
5. Raise the vehicle.
6. Support the vehicle with frame stands and suspend the front axle with the shocks attached.
7. Remove the front wheels, hubs, brake shoes, ABS sensors and backing plate assembly.
8. Disconnect the drag link from the steering arm.

CAUTION

IF THE AIR SPRING IS TO BE RE-INSTALLED; CARE MUST BE TAKEN TO REMOVE DIRT AND DEBRIS FROM THE PUSH–TO–CONNECT FITTING. FAILURE TO DO SO COULD RESULT IN THE PUSH–TO–CONNECT FITTING FAILING TO SEAL WITH THE AIR LINE. INSPECT LOCK-TABS FOR DAMAGE OR CRACKS PRIOR TO RE-INSTALLATION.

9. Unseat both of the air springs at the axle top pad.
10. Support the axle with a floor jack.
THE REPAIR OR RECONDITIONING OF SUSPENSION OR AXLE COMPONENTS IS NOT ALLOWED. ANY SUSPENSION OR AXLE COMPONENTS FOUND TO BE DAMAGED OR OUT OF SPECIFICATIONS MUST BE REPLACED. ALL MAJOR HENDRICKSON COMPONENTS ARE HEAT TREATED AND TEMPERED. AIRTEK COMPONENTS CANNOT BE BENT, WELDED, HEATED, OR REPAIRED WITHOUT REDUCING THE STRENGTH OR LIFE OF THE COMPONENT. FAILURE TO FOLLOW THESE GUIDELINES CAN CAUSE LOSS OF VEHICLE CONTROL, POSSIBLE PERSONAL INJURY, DEATH, OR PROPERTY DAMAGE AND WILL VOID APPLICABLE WARRANTIES.

11. Disconnect and remove the lower shock mounting bolts.
12. Remove the M20 clamp group bolts and fasteners.
13. Lower the axle and remove from the vehicle.

STEERTEK AXLE (Removed from Chassis)

CLAMP GROUP DISASSEMBLY

1. Remove the bottom axle wrap and liner from the axle.
2. Strike the top axle wrap with a dead blow mallet at the front and rear on the underside of the axle wrap to dislodge it from the axle, see Figure 9-28.
3. After removal of the top axle wrap from the axle inspect for cracks or fretting.
4. Remove the tie rod assembly. See Tie Rod Disassembly in this section.

WARNING

REMOVAL OF THE CAP SCREWS WILL ALLOW THE STEERING KNUCKLE TO SEPARATE FROM THE AXLE. THE STEERING KNUCKLE MUST BE SUPPORTED BEFORE REMOVAL OF THESE TWO (2) CAP SCREWS. FAILURE TO DO SO CAN CAUSE COMPONENT DAMAGE OR PERSONAL INJURY.

5. Remove the two 5/8” socket head cap screws from the steering knuckle assembly.
6. Remove the steering knuckle, thrust bearing, and shim pack if equipped.
7. After complete removal of the one side, repeat Steps 1-6 for the opposite side of the axle.
8. Inspect the steering kingpin bushings for excessive wear. If worn, replace the kingpin bushings and seals. Refer to the Kingpin Bushing component replacement instructions in this section.

CLAMP GROUP ASSEMBLY

WARNING

DO NOT ASSEMBLE CLAMP GROUP WITHOUT AXLE WRAP LINERS. FAILURE TO DO SO CAN CAUSE LOSS OF VEHICLE CONTROL, PROPERTY DAMAGE OR PERSONAL INJURY.

1. Install the new upper axle wrap liner on the axle. Index the liner with the axle’s guide dowel pin, see Figure 9-29.
CAUTION
DO NOT STRIKE THE TOP AXLE WRAP WITH A HAMMER. DAMAGE TO THE ALUMINUM AXLE WRAP WILL OCCUR. USE A PLASTIC DEAD BLOW MALLET WITH CARE WHEN INSTALLING THE AXLE WRAP.

WARNING
SECURELY INSTALL THE TOP WRAP TO THE AXLE. FAILURE TO DO SO CAN CAUSE LOSS OF CONTROL OF THE VEHICLE, PERSONAL INJURY OR PROPERTY DAMAGE.

SERVICE HINT
Apply a lubricant (such as an aerosol silicone) to the outer surface of the plastic liner to aid in assembly of the top axle wrap.

2. Install the top axle wrap, the axle wrap must be aligned with the guide pin on the axle.

3. **IMPORTANT:** Install the dowel pin and spacer(s), if equipped, into the top axle wrap, see Figure 9-30.

4. At this point in the assembly **DO NOT** install anything further on the axle.

AXLE INSTALLATION

1. Place the new axle on the floor jack and position the axle under the vehicle.

2. Raise the axle into position; see Figure 9-30. Care must be taken at this point to ensure that the dowel pins align correctly with the front leaf springs.

3. Install the galvanized liner between the main spring and the top pad, see Figure 9-30. The top pad is installed with the air spring bores positioned outboard.

FIGURE 9-30

4. Install the new bottom axle wrap liner (and Z spacer, if equipped), on the bottom axle wrap.

5. Install the bottom axle wrap on the axle.

6. Install the new M20 clamp group U-bolts/Hex bolts and the new M20 locknuts. Snug the bolts, **DO NOT** tighten to torque at this time.

7. Install the M16 lower shock mounting bolts, washers and locknuts and tighten to vehicle manufacturer’s torque specifications.

8. Ensure that the clamp group is properly aligned and the U-bolts/Hex bolts are seated in the top pad, and the bottom axle wrap is centered on the top axle wrap, see Figure 9-31.

NOTE
The clamp group U-bolt locknuts and hex bolt locknuts have the same torque value.
9. Tighten the clamp group locknuts evenly in 50 foot pounds (68 Nm) increments to 310 ± 20 foot pounds (420 ± 27 Nm) torque in the proper pattern to achieve uniform bolt tension, see Figure 9-32.

10. Install the steering knuckles. Refer to the Steering Knuckle Assembly instructions in this section.

11. Install the tie rod assembly.

12. Install the 7/8" hardened washers on the lower steering knuckle arm and the castle nuts. Tighten the castle nuts to 185 foot pounds (251 Nm), then rotate until the first castle slot lines up with the cotter pin bore in the tie rod end. **DO NOT** back off nut for cotter pin installation.

13. Install the tie rod end cotter pins.

14. Connect the drag link in the steering arm.

15. Install the castle nut. Tighten the castle nut to 185 foot pounds, (251 Nm) then rotate until the first castle slot lines up with the cotter pin bore in the drag link. **DO NOT** back off nut for cotter pin installation.

16. Install the drag link cotter pin.

17. Install the brake spider assemblies.

18. Install the brakes, hubs, and wheels as per manufacturer’s guidelines.

19. Fill the hubs with the proper lube, see the vehicle manufacturer’s guidelines for recommended lubrication, if required.

20. Grease the front steering components; refer to the lubrication guidelines in the Preventive Maintenance Section of this publication.

21. Remove safety stands.

22. See additional Air Spring Cautions and Warnings in the Important Safety Notice Section of this publication prior to deflating or inflating the air system.

23. Reconnect the height control valve linkage and air up the system.

24. Check the ride height, adjust as necessary. Refer to the Alignment & Adjustments Section of this publication.

25. Remove the wheel chocks.
STEERING KNUCKLE DISASSEMBLY

See tools needed to remove and install kingpin bushing under the Special Tools Section of this publication. The steering knuckle disassembly and assembly includes the preparation and replacement process of the kingpin bushings.

DISASSEMBLY

1. Place the vehicle on level floor.
2. Chock the wheels.
3. Raise the frame.
4. Support the vehicle with frame stands.
5. Remove the wheel and hub assembly.
6. Remove the brake components from the steering knuckle.
7. Remove the tie rod assembly.

SERVICE HINT

Lightly tap the side of the lower knuckle assembly arm with a mallet to separate the tie rod end from the knuckle assembly arm, see Figure 9-33.

8. Remove the drag link from the knuckle.

WARNING

REMOVAL OF THE CAP SCREWS WILL ALLOW THE LOWER STEERING KNUCKLE TO SEPARATE FROM THE AXLE. THE LOWER STEERING KNUCKLE MUST BE SUPPORTED BEFORE REMOVAL OF THESE TWO (2) CAP SCREWS. FAILURE TO DO SO CAN CAUSE COMPONENT DAMAGE OR PERSONAL INJURY.

9. Support the lower steering knuckle.

10. Remove the 2 socket head cap screws that connect upper steering knuckle to the lower steering knuckle, see Figure 9-34.

SERVICE HINT

Remove the grease zerks from the knuckle assemblies. This will allow the knuckle assemblies to freely slide up and down the kingpins without creating back pressure.

11. Remove the lower steering knuckle from the kingpin by sliding it down the kingpin.

12. Remove the upper steering knuckle by sliding it up off the kingpin.
KINGPIN MEASUREMENT AND PREPARATION

CLEANING THE GROUND OR POLISHED PARTS
■ Use a cleaning solvent to clean ground or polished parts and surfaces. DO NOT USE GASOLINE.
■ DO NOT clean ground or polished parts in a hot solution tank or with water, steam, or alkaline solutions. These solutions will cause corrosion of the parts.

CLEANING THE ROUGH PARTS
■ Rough parts can be cleaned with the ground or polished parts. Rough parts can also be cleaned in hot solution tanks with a weak alkaline solution. The parts must remain in the hot solution tanks until they are completely cleaned and heated.

DRYING THE CLEANED PARTS
■ Parts must be dried immediately after cleaning. Dry the parts with clean paper towels, clean rags, or compressed air. DO NOT dry bearings by spinning with compressed air. Damage to the bearings will result.

PREVENTING CORROSION ON CLEANED PARTS
■ Apply a light coating of oil to all cleaned and dried parts that are going to be reused. DO NOT apply oil to the brake lining or the brake drums. If parts are to be stored, apply an effective rust inhibitor to all surfaces.

WARNING: TO HELP PREVENT SERIOUS EYE INJURY, ALWAYS WEAR PROPER EYE PROTECTION WHEN YOU PERFORM VEHICLE MAINTENANCE OR SERVICE.

WARNING: SOLVENT CLEANERS CAN BE FLAMMABLE, POISONOUS AND CAUSE BURNS. TO HELP AVOID SERIOUS PERSONAL INJURY, CAREFULLY FOLLOW THE MANUFACTURER’S PRODUCT INSTRUCTIONS AND GUIDELINES AND THE FOLLOWING PROCEDURES:
1. WEAR PROPER EYE PROTECTION.
2. WEAR CLOTHING THAT PROTECTS YOUR SKIN.
3. WORK IN A WELL VENTILATED AREA.
4. DO NOT USE GASOLINE, SOLVENTS OR OTHER MATERIALS THAT CONTAIN GASOLINE THAN CAN EXPLODE.
5. HOT SOLUTION TANKS OR ALKALINE SOLUTIONS MUST BE USED CORRECTLY. FOLLOW THE MANUFACTURER’S RECOMMENDED INSTRUCTIONS AND GUIDELINES CAREFULLY TO HELP PREVENT PERSONAL ACCIDENT OR INJURY.

CAUTION: DO NOT USE HOT SOLUTION TANKS OR WATER AND ALKALINE SOLUTIONS TO CLEAN GROUND OR POLISHED PARTS. DAMAGE TO THE PARTS WILL RESULT.

WARNING: THE STEERTEK NXT / STEERTEK HAS A UNIQUE AXLE. THE KINGPIN IS CRYOGENICALLY INSTALLED IN THE AXLE. THE KINGPIN IS A NON-REPLACEABLE COMPONENT OF THE AXLE ASSEMBLY. DO NOT TRY TO REMOVE THE KINGPIN. IF THE KINGPIN SHOWS SIGNS OF MOVEMENT, CONTACT HENDRICKSON TECH SERVICES.
1. Prepare and polish the kingpin by removing all grease and excess debris using a fine grit (220 grit or higher) emery cloth and parts solvent, see Figures 9-35 through 9-38.
2. Inspect the kingpin for wear or damage. Use a micrometer and measure the upper and lower kingpin in two locations. Positions must be 90° opposed from each other. If the kingpin has less than 1.802" diameter, replacement of the axle is necessary, see Figures 9-39 through 9-42.

 Kingpin minimum dimension is 1.802"
KINGPIN BUSHING REMOVAL

You will need:
- A hydraulic shop press with a minimum forcing capacity of 2.5 tons (or use an arbor press)
- Kingpin Bushing Tools (see Special Tool Section in this publication)
 - Push-out Tool
 - Driver Tool
 - Receiving Tool
 - STEERTEK NXT (Vehicles built after July 2011) Remover / Installer Tool

WARNING

BEFORE APPLYING HYDRAULIC PRESSURE TO ANY TOOLING SET-UP, ALWAYS CHECK TO ENSURE THE PRESS PLATE, ADAPTERS, AND COMPONENTS BEING WORKED ON ARE POSITIONED PROPERLY, I.E. "IN LINE" WITH THE RAM OF THE PRESS. IMPROPER POSITIONING CAN CAUSE PERSONAL INJURY OR COMPONENT DAMAGE.

CAUTION

PRIOR TO APPLYING HYDRAULIC PRESSURE TO REMOVE OR INSTALL THE KINGPIN BUSHING, SUPPORT THE LOWER STEERING KNUCKLE AS SHOWN IN FIGURES 9-43 AND 9-44. IMPROPER SUPPORT TO THE STEERING KNUCKLES CAN CAUSE COMPONENT DAMAGE.
1. **STEERTEK axle** – Vehicles built prior to July 2011
 a. Remove the grease cap retaining ring.
 b. Ensure that each part of the steering knuckle assembly is squarely supported on the receiving tool before applying hydraulic pressure to press out the kingpin bushings, see Figure 9-43 through 9-45.
 c. Remove the grease zerk in the grease cap.
 d. Place a driver on top of the grease cap and press out the kingpin bushing and seal using the grease cap.
 e. Proceed to Step 3.

2. **STEERTEK NXT axle** – Vehicles built after July 2011
 a. Remove the threaded grease cap and grease zerk.
 b. Ensure that each part of the steering knuckle assembly is squarely supported on the receiving tool before applying hydraulic pressure to press out the kingpin bushings, see Figure 9-43 through 9-45.
 c. Place the STEERTEK NXT installer/remover tool in the steering knuckle/kingpin bore. Then place the kingpin bushing push-out tool on top of the installer/remover.
 d. Press out the kingpin bushing.

3. Clean the parts and inspect for reassembly, see Figure 9-46.

STEERING KNUCKLE BORE MEASUREMENT

Complete the following steering knuckle bore inspection and the measurement instructions prior to installing the kingpin bushing.

1. Measure the upper knuckle bore inside diameter at two locations. Always use an inside micrometer or a telescoping gauge when taking a knuckle bore measurement. Some out-of-roundness at the top and bottom of the bore edges is acceptable. Steering knuckle bore diameter is 1.938" ± 0.003".

2. Measure the upper and lower bore in two positions and at two locations. The two positions must be 90° opposed from each other, see Figures 9-47 through 9-49. If the average measurement is more than the knuckle bore maximum diameter specification, replace the knuckle.
KINGPIN BUSHING INSTALLATION

You will need:

- A hydraulic shop press with a minimum forcing capacity of 2.5 tons.

WARNING

BEFORE APPLYING HYDRAULIC PRESSURE TO ANY TOOLING SET-UP, ALWAYS CHECK TO BE SURE THE PRESS PLATE, ADAPTERS, AND COMPONENTS BEING WORKED ON ARE POSITIONED PROPERLY, I.E. "IN LINE" WITH THE RAM. IMPROPER POSITIONING CAN CAUSE PERSONAL INJURY OR COMPONENT DAMAGE.

1. Install the lower or upper steering knuckle in the press. Ensure that each part of the steering knuckle assembly is squarely supported on the receiving tool before applying hydraulic pressure to press in the kingpin bushings.

2. Always install the kingpin bushing from the machined side (axle side) of the lower steering knuckle using a bushing driver, (see driver specifications in the Special Tools Section of this publication). Press in bushing to a depth of no less than $\frac{1}{2}''$ (0.236") or 6 millimeters and no more than $\frac{5}{16}''$ (0.32") or 8 millimeters, see Figures 9-50 and 9-52.

3. Following this procedure it is necessary to ream the kingpin bushings to fit the kingpins, see Kingpin Bushing Reaming Instructions in this section.

KINGPIN BUSHING REAMING

CAUTION

REAM THE KINGPIN BUSHINGS WITH AN ADJUSTABLE STRAIGHT FLUTE REAMER. DO NOT HONE OR BURNISH THE KINGPIN BUSHINGS. HONING OR BURNISHING WILL DAMAGE THE BUSHINGS AND VOID ANY APPLICABLE WARRANTY.

WARNING

WHEN INSTALLING STEERING KNUCKLE COMPONENTS IN A VISE IT IS NECESSARY TO PROTECT THE MACHINED SURFACES FROM GOUGES OR MARRING BY USING BRASS JAWS. FAILURE TO DO SO CAN CAUSE PREMATURE PART DAMAGE, DAMAGE TO THE STEERING KNUCKLE COMPONENTS, LOSS OF WARRANTY, LOSS OF VEHICLE CONTROL, CAUSING PERSONAL INJURY OR PROPERTY DAMAGE.

1. Install the lower steering knuckle assembly in a vise with brass jaws.

SERVICE HINT

It is acceptable to mount the knuckle components in a vise either vertically or horizontally when performing the reaming procedure.

2. Install the reamer into the lower steering knuckle until the blades touch the kingpin bushing.

3. Rotate the reamer with light downward pressure. Rotate the reamer smoothly. **DO NOT** apply too much pressure, see Figures 9-53 and 9-54.

4. Slide the reamer out of the lower steering knuckle. If it is necessary to remove the reamer from the top, rotate the reamer opposite of cutting rotation.

5. Clean and remove all kingpin bushing material from the knuckle assembly. Take special attention to remove material from the grease channels and dimples.

6. Clean the $\frac{5}{8}''$ brake backing plate bolts with a wire wheel and run a tap through the threads of the upper steering knuckle and then flush out with brake cleaner and dry with compressed air.
PRIOR TO INSTALLATION ENSURE THAT ALL RESIDUAL LOCTITE MATERIAL IS REMOVED FROM THE MOUNTING BOLTS AND THE THREAD BORES IN THE UPPER STEERING KNUCKLE, AND NEW LOCTITE 277 OR EQUIVALENT IS APPLIED TO HELP ENSURE THAT THE BOLTS SUSTAIN THE PROPER TORQUE REQUIREMENT. FAILURE TO DO SO CAN CAUSE LOSS OF VEHICLE CONTROL RESULTING IN PERSONAL INJURY OR PROPERTY DAMAGE.

NOTE

The Hendrickson Genuine part, socket head cap screw comes with a pre-applied loctite compound.

7. Install the lower steering knuckle and the upper steering knuckle on the kingpin.

8. Check for the proper fit by rotating the knuckle assembly back and forth to verify there is no binding on the kingpin, see Figures 9-55 and 9-56.

9. If the bushing is too tight repeat Steps 1 through 8 until the proper clearance is achieved.

NOTE

Bushing size is to be 0.001" larger than the kingpin size.
KINGPIN SEAL INSTALLATION
1. Place the steering knuckle assembly in a vise with brass jaws or place on a suitable workbench. The steering knuckle will have the machined surface facing up (axle side up).

2. Lay the kingpin seal into the bore of the steering knuckle. The seal lip should face outward or toward the axle, see Figure 9-57.

3. Use a kingpin bushing driver tool (see Special Tool Section) and press seal firmly into the steering knuckle assembly.

4. STEERTEK NXT — Double Lip design, see Figure 9-58. Install the kingpin seal until it bottoms out in the kingpin bore.

5. STEERTEK — Single Lip design, see Figure 9-59. Install the kingpin seal until it makes contact with the kingpin bushing.

STEERING KNUCKLE ASSEMBLY

ASSEMBLY
After replacement of the kingpin bushings it is necessary to re-assemble the steering knuckle assemblies. The STEERTEK NXT/STEERTEK axle is equipped with two different thrust bearings. The composite thrust bearing is installed on the left side of the axle and the roller bearing is installed on the right side of the axle, see Figure 9-60. DO NOT substitute aftermarket components when servicing.

1. Install the thrust bearing on the lower kingpin with the seal facing up toward axle (the black seal will designate the top side), see Figure 9-60.
2. Install the shim, if equipped, on the upper kingpin.
3. Pack the bushing dimples on the upper and lower steering knuckles with multi purpose Lithium based grease (NLGI Grade 2) before installation.
4. Install the upper steering knuckle on the upper arm kingpin.
5. Install the lower steering knuckle on the lower kingpin and install the old socket head cap screws loose into the top two threaded holes.
6. Install a bottle jack under the lower knuckle and slightly raise the knuckle until it is possible to thread in the (3) brake backing plate bolts by hand. These are for guide purposes only.
7. Snug the two socket head cap screws.
8. Lower the bottle jack so that all the vertical end play is on the underside of the axle.
9. Affix a magnetic base dial indicator on the axle and place the tip of the dial indicator on top of the knuckle assembly, see Figure 9-61.

10. Zero the dial indicator.
11. Raise the bottle jack until there is NO CLEARANCE between the knuckle assembly and the bottom of the axle, slightly lifting the axle.
12. Check the reading on the dial indicator. The specification for vertical travel on the steering knuckle during assembly is 0.008" to 0.011".
13. If the clearance is above 0.011", loosen the socket head cap screws and push down on the knuckle assembly until the proper vertical end play is achieved.

If the clearance is below 0.008", loosen the socket head cap screws and pull up on the knuckle assembly until the proper vertical end play is achieved.

14. Remove one old socket head cap screw and replace with new socket head cap screw.
15. Remove second socket head cap screw and replace with new socket head cap screw. Tighten both socket head cap screws to 190 ± 10 foot pounds (258 ± 14 Nm) torque.
16. Recheck the vertical end play with the dial indicator, see Figure 9-61, or a 0.010" feeler gauge.
17. Remove the brake spider bolts, they should thread out freely.
18. Remove the bottle jack and continue assembling the wheel ends.
IMPORTANT NOTE

It is critical to apply Loctite to the three brake spider bolts to ensure that these bolts sustain the proper torque requirement of steering knuckle assembly.

19. Apply loctite to the three brake spider bolts prior to installation into the brake spider. Tighten bolts to \(190 \pm 10 \) foot pounds \((258 \pm 14 \text{ Nm})\) torque.

WARNING

DO NOT GREASE KNUCKLES WITHOUT THE BRAKE SPIDER INSTALLED AND TIGHTENED TO PROPER TORQUE. FAILURE TO DO SO CAN CAUSE COMPONENT DAMAGE RESULTING IN FAILURE AND LOSS OF VEHICLE CONTROL, POSSIBLY CAUSING PERSONAL INJURY OR PROPERTY DAMAGE.

20. Install the tie rod end into the lower steering knuckle arm.

21. Tighten the castle nuts to \(185 \) foot pounds \((251 \text{ Nm})\) torque then rotate the castle nut to the next castle slot and install cotter pin.

22. Install the drag link into the steering arm and tighten to the vehicle manufacturer’s specifications.

23. Install new O-rings on the grease caps and lubricate O-rings with grease.

24. **STEERTEK axle** – Install new grease caps and retaining rings.

STEERTEK NXT axle – Install new grease caps. Note the grease caps on the STEERTEK NXT axle are threaded, tighten to \(50-70 \) foot pounds torque. Install new grease zerk and tighten to a minimum of 15 foot pounds, see Figure 9-62.

![Figure 9-62](image)

25. Install brakes, drums, wheels and tires.

26. Remove jack and safety stands.

27. Grease steering knuckles with the vehicle on the floor.

28. Remove the wheel chocks.

TIE ROD END AND CROSS TUBE

NOTE

Hendrickson supplies different tie rod assemblies and each type may take a different replacement tie rod end kit to service. Prior to ordering find the part number on the tie rod tube, refer to Hendrickson publication no. SEU-0223 or contact Hendrickson Truck Parts for corresponding kit numbers.

![Figure 9-63](image)

DISASSEMBLY

1. Chock the wheels.
2. Position the steer axle tires straight ahead.
3. Remove the cotter pin and castle nut.
4. Lightly tap the side of the steering knuckle arm to loosen the tie rod end from the Ackermann arm, see Figure 9-63.
5. Repeat to Steps 3 and 4 to remove the other tie rod end.
6. Remove the cross tube and tie rod ends from the vehicle.
7. Mount the cross tube in a soft jaw vice.
8. Remove the hardware from the clamp on the cross tube.
9. Count the exposed threads on the tie rod end being replaced.
10. Remove the tie rod end from the cross tube.

WARNING

DO NOT HEAT THE CROSS TUBE WITH A TORCH TO FACILITATE THE REMOVAL OF THE TIE ROD END. THE USE OF SUCH HEAT CAN ADVERSELY AFFECT THE STRENGTH OF THE CROSS TUBE. A COMPONENT DAMAGED IN THIS MANNER WILL RESULT IN LOSS OF WARRANTY, AND CAN RESULT IN THE AND LOSS OF VEHICLE CONTROL, AND POSSIBLE PERSONAL INJURY OR PROPERTY DAMAGE.

11. If the opposing tie rod end is being replaced repeat Steps 8 through 10.
12. Inspect the cross tube for dents, cracks, or thread damage. Replace the cross tube if needed.

ASSEMBLY

1. Lubricate the new tie rod end threads with Anti-Seize.

NOTE

When installing the cross tube the thread direction of the tie rod ends are as follows:
- A right hand threaded tie rod end will be installed into the right side Ackermann arm.
- A left hand threaded tie rod end will be installed into the left side Ackermann Arm.

2. Install the new tie rod end into the cross tube, leaving the same amount of threads exposed that were counted on the failed tie rod end prior to removal.

WARNING

THE THREADED PORTION OF THE TIE ROD END MUST EXTEND PAST THE SLOTS INTO THE TIE ROD CROSS TUBE, SEE FIGURE 9-64. FAILURE TO DO SO CAN CAUSE COMPONENT DAMAGE, LOSS OF VEHICLE CONTROL AND POSSIBLE PERSONAL INJURY OR PROPERTY DAMAGE.

IT IS CRITICAL TO CHECK THE 5/8” TIE ROD CLAMP BOLT HEAD LOCATION TO VERIFY THE CLAMP FASTENERS HAVE SUFFICIENT CLEARANCE AWAY FROM THE LOWER SHOCK MOUNT AT FULL WHEEL CUT. THE FASTENERS MUST NOT CONTACT THE LOWER SHOCK MOUNT. FAILURE TO DO SO CAN CAUSE ONE OR MORE COMPONENTS TO FAIL CAUSING LOSS OF VEHICLE CONTROL AND POSSIBLE PERSONAL INJURY OR PROPERTY DAMAGE.

3. Replace the opposing tie rod end if necessary by repeating Steps 2 and 3.
DO NOT HEAT THE CROSS TUBE WITH A TORCH TO ROTATE THE CROSS TUBE IN THE TIE ROD END. THE USE OF SUCH HEAT CAN ADVERSELY AFFECT THE STRENGTH OF THE CROSS TUBE. A COMPONENT DAMAGED IN THIS MANNER WILL RESULT IN LOSS OF WARRANTY, AND CAN RESULT IN THE LOSS OF VEHICLE CONTROL AND POSSIBLE PERSONAL INJURY OR PROPERTY DAMAGE.

4. It is critical that the cross tube rotate in the opposing tie rod end, even if it is not replaced.
5. Install the tie rod end into the lower steering knuckle.
6. Tighten the castle nuts to 185 foot pounds (251 Nm) torque then rotate the castle nut to the next castle slot and install cotter pin.
7. Grease the tie rod ends. Refer to the Lubrication Chart for required lubricant in the Preventive Maintenance Section of this publication.
8. Set the toe, refer to the Toe Adjustment Procedure in the Alignment & Adjustments Section in this publication.

SINGLE TO DUAL HEIGHT CONTROL VALVE CONVERSION

NOTE
The following instructions are for vehicles built prior to March of 2005 not equipped with dual height control valves. As of March 2005 all Volvo vehicles equipped with the AIRTEK suspension have been and continue to be equipped with dual height control valves.

Dual Height Control Valve Conversion Kits are available for vehicles built prior to March of 2005 to convert from a single valve to dual height control valves. Service Kit Numbers 60961-101 (12/12.5K capacity) and 60960-102 (13.2K/14.6K capacity), refer to the Parts List Section of this publication for more information.

DISASSEMBLY
1. Place vehicle on level floor.
2. Chock the wheels.
3. See additional Air Spring Cautions and Warnings in the Important Safety Notice Section of this publication prior to deflating or inflating the suspension system.
4. Remove the air from the air system by disconnecting the height control valve linkage at the rubber grommet and allowing the lever to drop. This will exhaust air from the system.
5. Disconnect the delivery air line from the right air spring.

ASSEMBLY
1. Install the right side height control valve assembly on the right side upper air spring bracket and connect the link to the bracket on the top pad.
2. Inspect the air line removed from the right air spring, trim the end square if necessary. Insert the air line in the supply port of the new height control valve.
3. Install a new air line from the right height control valve delivery port and into the right air spring fitting. Cut the new line to length and ensure that the ends of the line are cut square. Make sure that air lines are fully seated in the fittings.
4. It is important to identify and mark each existing air line prior to removal of the air line for proper installation of the dual height control valves. The air line connections to the proper ports/supply during reassembly are essential to the conversion process.

5. Remove the air lines from the existing left side height control valve.

6. Remove the existing left side height control valve assembly and discard.

7. Install the new left side height control valve assembly on the left side upper air spring mounting bracket and connect the link to the bracket on the top pad.

8. Install a new air line from the left height control valve delivery port and into the left air spring fitting. Cut the new line to length and ensure that the ends of the line are cut square. Make sure that air lines are fully seated in the fittings. It must be determined prior to cutting and installing the air line if the vehicle is equipped with a suspension air pressure gauge. It is required that a T-fitting be installed in the middle of the line to read the suspension air pressure.

9. Acquire access to the air lines inside the left frame rail and connect them. Cut plastic ties as necessary to gain access to the air lines routed inside the frame rail.

10. The supply line from tank will continue to be the supply line for both height control valves. It will be necessary to cut the supply line where it is routed through the left frame rail hole. Install a T-fitting at this location.

11. Cut to length and install an air line from the T-fitting to the left height control valve supply port.

12. Trace the former right air spring delivery line (which is now the right height control valve supply line) and find the T-fitting that has the suspension dash air gauge line installed in it.

13. Remove the dash gauge air line and install it in the T-fitting that was installed in the left air spring delivery line.

14. Remove the T-fitting from the former right air spring delivery line and install a union. Cut a new air line to length from the union to the system air supply T-fitting.

15. Install the air line. Install new plastic lines and secure all air lines inside the left frame rail. This should complete the installation and plumbing of the height control valves. See Dual Height Control Valve in the Plumbing Diagram Section of this publication.

16. Loosen the right side clamp group.

17. Loosen and remove the left clamp group locknuts.

18. Install a jack underneath the left spring in front of the axle. Position the jack far enough away from the axle to allow enough clearance for removal of the 20 or 12 mm spacer, see Figure 9-65.
19. Raise the jack and lift the left leaf spring off the axle spring seat.
20. Remove and discard 20 or 12 mm spacer.
21. Remove the left dowel pin to shorten the dowel pin to the length of the thickness of the removed spacer (20 or 12 mm spacer).
22. Insert the shortened left dowel pin.
23. Ensure that the clamp group is properly aligned and the hex bolts are seated in the top pad, and the bottom axle wrap is centered on the top axle wrap, see Figure 9-66.

FIGURE 9-66

Volvo vehicles built with HEX BOLTS • Pre ’07 Engine

- **IMPORTANT**
 - Ensure that Axle Clamp Group is properly aligned

- **IMPORTANT**
 - Ensure that M20 Hex bolts are seated properly in the Top Pad

M20 Clamp Group Locknuts
Tightening Torque 310 ± 20 ft.lbs.

24. Tighten the clamp group locknuts evenly in 50 foot pounds (68 Nm) increments to 310 ± 20 foot pounds (420 ± 27 Nm) torque in the proper pattern to achieve uniform bolt tension, see Figure 9-67.
25. Air up system.
26. Install the height control valve linkage(s) and inflate the suspension to normal operating pressure.
27. Remove wheel chocks.
28. Verify proper ride height, see Alignment and Adjustment Section of this publication.
SECTION 10
Plumbing Diagrams

DUAL HEIGHT CONTROL VALVES PLUMBING DIAGRAM

NOTE
This plumbing diagram is for height control valve supplied by Hendrickson. Contact the vehicle manufacturer for the diagram when a height control valve not supplied by Hendrickson.

NOTE
Prior to March 2005, some Volvo vehicle configurations required dual height control valves. As of March 2005 all Volvo vehicles equipped with the AIRTEK suspension have been and continue to be equipped with dual height control valves. Hendrickson has Dual Height Control Valve Conversion Kits available to convert from Single Height Control Valve to Dual Height Control Valve. See Parts List Section of this publication.

When replacing or installing nylon air line tubing into quick-connect fittings it is critical that the end of the air line is cut square. Improper cut of the end of the air line tubing can cause the air line to seat improperly in the quick connect fitting causing air leakage.
NOTE

As of March 2005 all Volvo vehicles equipped with the AIRTEK suspension have been and continue to be equipped with dual height control valves.

When replacing or installing nylon air line tubing into quick-connect fittings it is critical that the end of the air line is cut square. Improper cut of the end of the air line tubing can cause the air line to seat improperly in the quick connect fitting causing air leakage.

Pressure Protection Valve

¼” Nylon Air Line
S.A.E., D.O.T. compliant
Use convoluted tubing over all nylon air lines.
SECTION 11
Troubleshooting Guide

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>POSSIBLE CAUSE</th>
<th>CORRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worn or damaged kingpins and kingpin bushings.</td>
<td>Dirt in system-contaminated lubricant</td>
<td>Polish and inspect kingpin, replace bushings and seals, then follow specified lubrication procedures</td>
</tr>
<tr>
<td></td>
<td>Incorrect lubricant</td>
<td>Lubricate axle with specified lubricant</td>
</tr>
<tr>
<td></td>
<td>Axle not lubricated at scheduled frequency</td>
<td>Lubricate axle at scheduled frequency</td>
</tr>
<tr>
<td></td>
<td>Incorrect lubrication procedures</td>
<td>Use correct lubrication procedures</td>
</tr>
<tr>
<td></td>
<td>Lubrication interval not compatible with operating conditions</td>
<td>Change lubrication interval to match operating conditions</td>
</tr>
<tr>
<td></td>
<td>Worn or missing seals</td>
<td>Replace worn or missing seals</td>
</tr>
<tr>
<td>Vibration or shimmy of front axle during operation</td>
<td>Ride height out of adjustment</td>
<td>Adjust ride height to specification</td>
</tr>
<tr>
<td></td>
<td>Caster is out of adjustment</td>
<td>Adjust caster</td>
</tr>
<tr>
<td></td>
<td>Wheels and/or tires out of balance</td>
<td>Balance or replaces wheels and/or tires</td>
</tr>
<tr>
<td></td>
<td>Engine mount broken</td>
<td>Replace engine mount</td>
</tr>
<tr>
<td></td>
<td>Worn shock absorbers</td>
<td>Replace shock absorbers</td>
</tr>
<tr>
<td></td>
<td>Incorrect wheel bearing adjustment</td>
<td>Adjust wheel bearing to correct specifications</td>
</tr>
<tr>
<td>Excessive wear on tires or uneven tire tread wear</td>
<td>Tires have incorrect air pressure</td>
<td>Adjust the pressure to manufacturer’s specification</td>
</tr>
<tr>
<td></td>
<td>Tires out of balance</td>
<td>Balance or replace tires</td>
</tr>
<tr>
<td></td>
<td>Incorrect tandem axle alignment</td>
<td>Align tandem axles</td>
</tr>
<tr>
<td></td>
<td>Incorrect toe setting</td>
<td>Adjust toe-in to manufacturer’s specification</td>
</tr>
<tr>
<td></td>
<td>Incorrect steering arm geometry</td>
<td>Repair steering system as necessary</td>
</tr>
<tr>
<td></td>
<td>Excessive wheel bearing end play</td>
<td>Check specified wheel nut torque, replace worn or damaged wheel bearings</td>
</tr>
<tr>
<td></td>
<td>Worn kingpin bushings</td>
<td>Replace kingpin bushings</td>
</tr>
<tr>
<td></td>
<td>Incorrect wheel bearing adjustment</td>
<td>Adjust wheel bearing to correct specifications</td>
</tr>
<tr>
<td>Vehicle is hard to steer</td>
<td>Low pressure in the power steering system</td>
<td>Repair power steering system</td>
</tr>
<tr>
<td></td>
<td>Steering linkage needs lubrication</td>
<td>Lubricate steering linkage</td>
</tr>
<tr>
<td></td>
<td>Steering knuckles are binding</td>
<td>Replace kingpin bushings. Grease if out of specification or damaged.</td>
</tr>
<tr>
<td></td>
<td>Incorrect steering arm geometry</td>
<td>Repair steering system as necessary</td>
</tr>
<tr>
<td></td>
<td>Thrust bearing will not take grease</td>
<td>Replace thrust bearing</td>
</tr>
<tr>
<td></td>
<td>Caster out of adjustment</td>
<td>Set proper ride height then adjust caster as necessary</td>
</tr>
<tr>
<td></td>
<td>Tie rod ends binding</td>
<td>Replace tie rod ends</td>
</tr>
<tr>
<td></td>
<td>Worn thrust bearing</td>
<td>Replace thrust bearing</td>
</tr>
<tr>
<td>CONDITION</td>
<td>POSSIBLE CAUSE</td>
<td>CORRECTION</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>Tie rod ends are worn and require replacement</td>
<td>Tie rod ends need lubrication</td>
<td>Lubricate tie rod ends. Make sure lubrication schedule is followed.</td>
</tr>
<tr>
<td></td>
<td>Severe operating conditions</td>
<td>Increase frequency of inspection and lubrication intervals</td>
</tr>
<tr>
<td></td>
<td>Damaged boot on tie rod end</td>
<td>Replace tie rod end</td>
</tr>
<tr>
<td>Bent or broken cross tube, tie rod end ball stud or tie rod end</td>
<td>Pump/gear relief valve pressure setting exceeds system specifications</td>
<td>Adjust power steering system to manufacturer’s specified pressure</td>
</tr>
<tr>
<td></td>
<td>Steering gear poppets improperly set or malfunctioning</td>
<td>Check for proper operation or adjust poppets to OEM specifications</td>
</tr>
<tr>
<td></td>
<td>Axle stops improperly set</td>
<td>Set axle stops to OEM specifications</td>
</tr>
<tr>
<td></td>
<td>Severe duty cycle service</td>
<td>Increase frequency of inspection and lubrication intervals</td>
</tr>
<tr>
<td>Worn or broken steering ball stud</td>
<td>Drag link fasteners tightened past specified torque</td>
<td>Tighten drag link fasteners to the specified torque</td>
</tr>
<tr>
<td></td>
<td>Lack of lubrication or incorrect lubricant</td>
<td>Lubricate linkage with specified lubricant</td>
</tr>
<tr>
<td></td>
<td>Power steering stops out of adjustment</td>
<td>Adjust steering stops to OEM specifications</td>
</tr>
<tr>
<td>Suspension has harsh or bumpy ride</td>
<td>Air spring not inflated</td>
<td>Check air supply to air spring, repair as necessary</td>
</tr>
<tr>
<td></td>
<td>Air spring ride height out of specification</td>
<td>Adjust ride height to proper specification</td>
</tr>
<tr>
<td></td>
<td>Broken or worn leaf spring</td>
<td>Replace leaf spring</td>
</tr>
<tr>
<td></td>
<td>Front suspension overloaded</td>
<td>Redistribute steer axle load</td>
</tr>
<tr>
<td></td>
<td>Suspension is under loaded</td>
<td>Redistribute load to provide more weight on front axle</td>
</tr>
<tr>
<td>Restricted steering radius</td>
<td>Steering stops not adjusted correctly</td>
<td>Adjust steering stops to achieve correct wheel cut</td>
</tr>
<tr>
<td>Vehicle leans</td>
<td>Ride height incorrect</td>
<td>Adjust ride height to specification</td>
</tr>
<tr>
<td></td>
<td>Air spring(s) are not inflated</td>
<td>Repair source of air pressure loss</td>
</tr>
<tr>
<td></td>
<td>Suspension is not torqued correctly at installation</td>
<td>Perform AIRTEK spring hanger re-torque procedure. See Torque Specification Section of this publication</td>
</tr>
<tr>
<td></td>
<td>Leaf spring broken</td>
<td>Replace leaf spring</td>
</tr>
<tr>
<td></td>
<td>Excessive weight bias</td>
<td>Install Z spacer or, if not equipped with dual height control valves, install with vehicle manufacturer approval</td>
</tr>
<tr>
<td>Vehicle wanders</td>
<td>Caster out of adjustment</td>
<td>Set proper ride height, then adjust caster as necessary</td>
</tr>
<tr>
<td></td>
<td>Incorrect toe setting</td>
<td>Adjust toe to specification</td>
</tr>
<tr>
<td></td>
<td>Fifth wheel not greased</td>
<td>Grease fifth wheel</td>
</tr>
<tr>
<td></td>
<td>Air in the power steering system</td>
<td>Remove air from the power steering system</td>
</tr>
<tr>
<td></td>
<td>Rear ride height out of adjustment</td>
<td>Adjust ride height to specification</td>
</tr>
<tr>
<td></td>
<td>Front ride height out of adjustment</td>
<td>Adjust ride height to specification</td>
</tr>
</tbody>
</table>
SECTION 12
Torque Specifications

- AIRTEK Volvo vehicles built with STEERTEK NXT Axle after July 2011

HENDRICKSON RECOMMENDED TORQUE VALUES PROVIDED IN FOOT POUNDS
<table>
<thead>
<tr>
<th>NO.</th>
<th>COMPONENT</th>
<th>QTY.</th>
<th>SIZE</th>
<th>*TORQUE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foot Pounds</td>
<td>Nm</td>
</tr>
<tr>
<td></td>
<td>Frame Fasteners Furnished & Installed by Vehicle Manufacturer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Front Frame Hanger to Front Spring Eye, tighten at the bolt head</td>
<td>2</td>
<td>M20</td>
<td>400 ± 60</td>
</tr>
<tr>
<td>2</td>
<td>Shackle Bracket to Shackle Plate and Spring, tighten at the bolt head</td>
<td>6</td>
<td>M20</td>
<td>400 ± 60</td>
</tr>
<tr>
<td>3</td>
<td>Air Spring 12.5K pounds Capacity</td>
<td></td>
<td>Self Locking</td>
<td>Snap Fit</td>
</tr>
<tr>
<td>4</td>
<td>Air Spring 13.2/14.6K pounds Capacity to Top Pad</td>
<td>2</td>
<td>M12</td>
<td>*50 ± 10</td>
</tr>
<tr>
<td>5</td>
<td>Air Spring 13.2/14.6K pounds Capacity to Height Control Valve Bracket</td>
<td>2</td>
<td>M20</td>
<td>*45 ± 5</td>
</tr>
<tr>
<td>6</td>
<td>Clamp Group Hardware - U-bolt</td>
<td>4</td>
<td>M20</td>
<td>350 ± 20</td>
</tr>
<tr>
<td>7</td>
<td>Knuckle Attachment Bolt (Socket Head Cap Screw)</td>
<td>4</td>
<td>5/8"</td>
<td>190 ± 10</td>
</tr>
<tr>
<td>8</td>
<td>Knuckle/Axle Wheel Stop Bolt</td>
<td>2</td>
<td>1/2" Jam Nut</td>
<td>50 ± 10</td>
</tr>
<tr>
<td>9</td>
<td>Tie Rod Tube to Tie Rod Ends</td>
<td>2</td>
<td>3/8"</td>
<td>68 ± 8</td>
</tr>
<tr>
<td>10</td>
<td>Tie Rod Ends to Lower Steering Knuckle</td>
<td>2</td>
<td>7/8" Castle Nut</td>
<td>185</td>
</tr>
<tr>
<td>11</td>
<td>Rubber Axle Stop</td>
<td>2</td>
<td>--</td>
<td>Press Fit</td>
</tr>
<tr>
<td>12</td>
<td>Grease Cap Assembly</td>
<td>4</td>
<td></td>
<td>60 ± 10</td>
</tr>
<tr>
<td>13</td>
<td>Grease Zerk</td>
<td>2</td>
<td></td>
<td>Minimum of 15</td>
</tr>
</tbody>
</table>

NOTES:

* All hardware shown in gray denotes fasteners originally supplied by the vehicle manufacturer. Torque values listed above apply only if Hendrickson supplied fasteners are used. If non-Hendrickson fasteners are used, follow torque specifications listed in vehicle manufacturer’s service manual.

** Torque to 185 foot pounds, advance nut to next hex face to install cotter pin. DO NOT back off nut for cotter pin installation.

WARNING

ENSURE Clamp Group IS ALIGNED PROPERLY PRIOR TO TIGHTENING HARDWARE. FAILURE TO DO SO CAN CAUSE LOSS OF VEHICLE CONTROL, PROPERTY DAMAGE OR PERSONAL INJURY.
Vehicles built with STEERTEK Axle prior to July 2011

HENDRICKSON RECOMMENDED
TORQUE VALUES PROVIDED IN FOOT POUNDS

Volvo vehicles built prior to 12/07

- **1.** 400±60 (542±81)
- **2.** 400±60 (542±81)
- **3.** Snap Fit
- **4.** 50±10 (68±14)
- **5.** 45±5 (61±7)
- **6.** Loose Fit
- **7.** Snap Fit
- **8.** 310±20 (420±27)
- **9.** 190±10 (258±14)
- **10.** 50±10 (68±14)
- **11.** 68±8 (92±11)
- **12.** Snap Fit
- **13.** Press Fit
- **14.** 9±1 (12±1)
- **15.** 10±2 (14±3)
- **16.** 11±1 (15±1)
- **17.** 11±1 (15±1)
- **18.** Push In

Volvo vehicles built with Pre'07 Engine

- **1.** 400±60 (542±81)
- **2.** 400±60 (542±81)
- **3.** Snap Fit
- **4.** 50±10 (68±14)
- **5.** 45±5 (61±7)
- **6.** Loose Fit
- **7.** Snap Fit
- **8.** 310±20 (420±27)
- **9.** 190±10 (258±14)
- **10.** 50±10 (68±14)
- **11.** 68±8 (92±11)
- **12.** Snap Fit
- **13.** Press Fit
- **14.** 9±1 (12±1)
- **15.** 10±2 (14±3)
- **16.** 11±1 (15±1)
- **17.** 11±1 (15±1)
- **18.** Push In
- **19.** 310±20 (420±27)
AIRTEK for Volvo Vehicles

built with STEERTEK Axle PRIOR to July 2011

HENDRICKSON RECOMMENDED TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>NO.</th>
<th>COMPONENT</th>
<th>QTY.</th>
<th>SIZE</th>
<th>TORQUE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foot Pounds</td>
<td>Nm</td>
</tr>
<tr>
<td>Frame Fasteners Furnished & Installed by Vehicle Manufacturer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Front Frame Hanger to Front Spring Eye, tighten at the bolt head</td>
<td>2</td>
<td>M20</td>
<td>400 ± 60</td>
</tr>
<tr>
<td>2</td>
<td>Shackle Bracket to Shackle, tighten at the bolt head</td>
<td>6</td>
<td>M20</td>
<td>400 ± 60</td>
</tr>
<tr>
<td>3</td>
<td>Air Spring 12.5K pounds Capacity</td>
<td></td>
<td>Self Locking</td>
<td>Snap Fit</td>
</tr>
<tr>
<td>4</td>
<td>Air Spring 13.2/14.6K pounds Capacity to Top Pad</td>
<td>1</td>
<td>M12</td>
<td>*50 ± 10</td>
</tr>
<tr>
<td>5</td>
<td>Air Spring 13.2/14.6K pounds Capacity to Height Control Valve Bracket and Air Spring Bracket</td>
<td>2</td>
<td>M20</td>
<td>*45 ± 5</td>
</tr>
<tr>
<td>6</td>
<td>Spring Center Alignment Dowel Pin</td>
<td>2</td>
<td>½"</td>
<td>Loose Fit</td>
</tr>
<tr>
<td>7</td>
<td>Axle Wrap Liners for Clamp Group</td>
<td></td>
<td>Formed</td>
<td>Snap Fit</td>
</tr>
<tr>
<td>8</td>
<td>Clamp Group Hardware - U-bolt</td>
<td>4</td>
<td>M20</td>
<td>310 ± 20</td>
</tr>
<tr>
<td>9</td>
<td>Knuckle Attachment Bolt (Socket Head Cap Screw)</td>
<td>4</td>
<td>½" Jam Nut</td>
<td>190 ± 10</td>
</tr>
<tr>
<td>10</td>
<td>Knuckle/Axle Wheel Stop Bolt</td>
<td>2</td>
<td>½" Jam Nut</td>
<td>50 ± 10</td>
</tr>
<tr>
<td>11</td>
<td>Tie Rod Tube to Tie Rod Ends</td>
<td>2</td>
<td>½"</td>
<td>68 ± 8</td>
</tr>
<tr>
<td>12</td>
<td>Tie Rod Ends to Lower Steering Knuckle</td>
<td>2</td>
<td>½" Castle Nut</td>
<td>185</td>
</tr>
<tr>
<td>13</td>
<td>Rubber Axle Stop</td>
<td>2</td>
<td>--</td>
<td>Press Fit</td>
</tr>
</tbody>
</table>

Volvo vehicles built with Post '07 Engine

The torque specifications of the Post '07 Engine also apply to the Pre '07 Engine

<table>
<thead>
<tr>
<th>NO.</th>
<th>COMPONENT</th>
<th>QTY.</th>
<th>SIZE</th>
<th>TORQUE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foot Pounds</td>
<td>Nm</td>
</tr>
<tr>
<td>14</td>
<td>Dual Height Control Valve to Height Control Valve Bracket</td>
<td>2</td>
<td>M6</td>
<td>9 ± 1</td>
</tr>
<tr>
<td>15</td>
<td>Single Height Control Valve to Height Control Valve Bracket</td>
<td>2</td>
<td>¼"</td>
<td>9 ± 1</td>
</tr>
<tr>
<td>16</td>
<td>Height Control Valve Bracket to Upper Air Spring Bracket</td>
<td>2</td>
<td>M6</td>
<td>10 ± 2</td>
</tr>
<tr>
<td>17</td>
<td>HCV Linkage to Top Pad</td>
<td>2</td>
<td>M8</td>
<td>11 ± 1</td>
</tr>
<tr>
<td>18</td>
<td>HCV Linkage to Height Control Valve</td>
<td>2</td>
<td>M8</td>
<td>11 ± 1</td>
</tr>
<tr>
<td>19</td>
<td>Clamp Group Hardware - Hex Bolt</td>
<td>8</td>
<td>M20</td>
<td>310 ± 20</td>
</tr>
</tbody>
</table>

Frame mount hardware in most cases are Huck style fasteners supplied by the OEM.

NOTES:

* All hardware shown in gray denotes fasteners originally supplied by the vehicle manufacturer. Torque values listed above apply only if Hendrickson supplied fasteners are used. If non-Hendrickson fasteners are used, follow torque specifications listed in vehicle manufacturer’s service manual.

** Torque to 185 foot pounds, advance nut to next hex face to install cotter pin. DO NOT back off nut for cotter pin installation.
SECTION 13
Front Wheel Alignment Specifications

AIRTEK® for Volvo Vehicles

AIRTEK FRONT AIR MODULE SUSPENSION ALIGNMENT SPECIFICATION

<table>
<thead>
<tr>
<th>CAMBER<sup>1</sup></th>
<th>DESIGN SPECIFICATION</th>
<th>RANGE</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LEFT</td>
<td>0.0° ± 1.0°</td>
<td>MINIMUM</td>
<td>-1.0°</td>
<td>MAXIMUM</td>
</tr>
<tr>
<td>RIGHT</td>
<td>-0.25° ± 1.0°</td>
<td>MINIMUM</td>
<td>-1.25°</td>
<td>MAXIMUM</td>
</tr>
<tr>
<td>CROSS</td>
<td>+0.25° ± 1.0°</td>
<td>MINIMUM</td>
<td>-0.75°</td>
<td>MAXIMUM</td>
</tr>
</tbody>
</table>

CAMBER NOTES:
1. The camber angle is not adjustable. **DO NOT** bend axle or otherwise try to adjust camber. If found out of specification, notify Hendrickson Tech Services for further information.

<table>
<thead>
<tr>
<th>CASTER<sup>2,3,5</sup></th>
<th>DESIGN SPECIFICATION</th>
<th>RANGE</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LEFT</td>
<td>3.75° ± 1.0°</td>
<td>MINIMUM</td>
<td>+2.75°</td>
<td>MAXIMUM</td>
</tr>
<tr>
<td>RIGHT</td>
<td>3.75° ± 1.0°</td>
<td>MINIMUM</td>
<td>+2.75°</td>
<td>MAXIMUM</td>
</tr>
<tr>
<td>CROSS<sup>4</sup></td>
<td>0.0° ± 1.5°</td>
<td>MINIMUM</td>
<td>-1.5°</td>
<td>MAXIMUM</td>
</tr>
</tbody>
</table>

CASTER NOTES:
2. Caster is determined with the vehicle at specified ride height for air suspension or at rated load for mechanical suspension systems. It is critical that the vehicle front and rear ride height is within specifications prior to performing a caster measurement or adjustment. See Hendrickson ride height specifications and procedure.
3. In most cases actual vehicle caster is defined with the frame rails at zero slope. Refer to the vehicle manufacturer’s specifications for correct frame rail slope. (Both the alignment surface and the vehicle’s frame rails should be level during execution of alignment procedures). For vehicles with a positive frame rake (higher in rear) add the frame slope (in degrees) to the caster reading to determine true vehicle caster.
4. The cross caster angle is not adjustable – **DO NOT** bend axle or otherwise try to adjust cross caster. If found out of specifications notify Hendrickson Tech Services for further information. Changes to caster can be attained by using caster shims as provided by the vehicle manufacturer or chassis and body manufacturer. Caster shims must match, side to side, to reduce uneven loading to the suspension components. **The use of two different angle caster shims will not correct cross caster.**
5. Example of caster adjustment: 2.5º RH/3º LH, would require one, 1.0 shim on each side to increase caster and achieve 3.50º RH/4.00º LH, that is in specification. **DO NOT** attempt to use uneven shims.

Hendrickson recommends following TMC⁷ practices:

<table>
<thead>
<tr>
<th>TOTAL TOE<sup>7</sup></th>
<th>DESIGN SPECIFICATION<sup>6</sup></th>
<th>RANGE</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>½" ± ¼" (0.06" ± 0.03")</td>
<td>MINIMUM</td>
<td>¼" (0.03")</td>
<td>MAXIMUM</td>
</tr>
</tbody>
</table>

TOE-IN NOTES:
6. Toe-in is to be set and adjusted in the normal vehicle unloaded configuration. Actual vehicle curb weight on the ground. Toe should be checked at the tires front and rear tread center, at a distance above ground equal to the tire’s rolling radius.
7. In most instances total toe is set by the vehicle manufacturer or body builder. Consult the vehicle manufacturer for specifications.
SECTION 14
Reference Material

This technical publication covers Hendrickson Truck Suspension System’s recommended procedures for our parts/products. Other components play a major role in overall performance and Hendrickson recommends you follow the specific vehicle OEM’s recommendation for care and maintenance. Some recommended procedures have been developed by The Technology & Maintenance Council (TMC) and Hendrickson supports these recommendations. We have compiled a list of these below.

TMC
To obtain copies of the following RP’s, video’s, or charts, contact TMC at:

TMC/ATA
2200 Mill Road
Alexandria, VA 22314
Phone: 703-838-1763
website: tmc.truckline.com
online ordering: www.truckline.com/store

Important References

TMC RP 214B Tire/Wheel End Balance and Runout
TMC RP 216 Radial Tire Conditions Analysis Guide
TMC RP 219A Radial Tire Wear Conditions and Causes
TMC RP 222A User’s Guide To Wheels and Rims
TMC RP 230 Tire Test Procedures for Tread wear, Serviceability, and Fuel Economy
TMC RP 514 Pre-Alignment Inspection
TMC RP 618 Wheel Bearing Adjustment Procedure
TMC RP 620B Front End Alignment Steering Geometry
TMC RP 708A Trailer Axle Alignment
TMC RP 642 Guidelines For Total Vehicle Alignment
TMC RP 644 Wheel End Conditions Analysis Guide
TMC RP 645 Tie Rod End Inspection and Maintenance Procedure

Video

TMC T0326 Wheel End Maintenance
TMC T0372 Tire Pre-Trip Inspection Guidelines

Other

TMC T0400 Wheel bearing Adjustment Procedure Wall Chart