NOTE: For information on TIREMAAX® CP systems purchased prior to April 2012, refer to Hendrickson literature number L995.

QUICK REFERENCE GUIDE
First become familiar with the information on page 4 through page 11, then refer to the following pages for installation instructions on suspensions with:

- TIREMAAX®, DRESSED axles on page 24 through page 38.
- TIREMAAX, UNDRESSED axles on page 14 through page 38.
- All other axles, pre-drilled, on page 17 through page 38.
- All other axles, not drilled, on page 14 through page 38.
TABLE OF CONTENTS

Conventions Applied in this Document
- Explanation of Signal Words .. 4
- Links .. 4

General Service Notes
- During Service: ... 4
- Important Safety Notices .. 5
- Contact Hendrickson .. 6
- Email .. 6
- Phone .. 6
- Literature .. 6
- Preparing Trailer for Service .. 7

General Information
- About this Manual .. 8
- System Overview .. 8
- Features .. 8
 - System Specifications .. 8
- Component Description ... 10
 - TIREMAAX® Controllers ... 10
 - Controller details: ... 10
 - Hubcap .. 10
 - Axle Hoses and Fittings .. 11
 - Spindle Plug and Grommet ... 11
 - Tire Hoses .. 11
 - Indicator Lamp ... 11

Operation
- TIREMAAX® Functional Diagrams ... 12
- TIRE INFLATION ... 13
- Tire Deflation (TIREMAAX PRO only) ... 13

Installation
- Installation Materials and Supplies .. 14
- Installation Introduction .. 14
- Axle Preparation ... 14
- Axle Component Installation ... 17
 - Axle Hose Installation .. 17
 - 90° Supply Fitting Installation ... 18
- Additional Axles ... 18
- Axle Vent Installation ... 20
- Spindle Plug Installation .. 20
- Hubcap Installation .. 22
- Tire Hose Installation ... 24
- Controller Installation ... 25
- Manifold Installation ... 26
- Control Line Installation .. 27
- Electrical Component Installation ... 34
Wire Harness Options And Details ... 34
Standard Wire Harness Installation ... 35
ABS Junction Wire Harness Installation ... 35
Adding Restraint To Wiring .. 35
Trailer-Mounted Indicator Lamp Installation ... 36

System integrity check .. 36
System setup .. 36
Decal Location ... 37

Troubleshooting ... 38
Troubleshooting procedure .. 38
Troubleshooting Matrix .. 39
List of Effects with Descriptions .. 40
Probable Causes with Recommended Fix .. 41

SERVICE Procedures .. 45
Tools Required .. 45
Inspections and Inspection Intervals .. 45
 Every Three Months .. 45
 Every 12 months ... 45
In The Event Of A Leak .. 45
Checking for Air Leaks .. 45
Indicator Lamp Test ... 47
Manually Check Tire Pressure .. 48
Disable TIREMAAX® TIS .. 48
Setting CP Inflation Pressure .. 49
 Required Tools And Resources ... 49
 Checking CP Inflation Pressure ... 49
 Adjusting CP Inflation Pressure ... 50
 Restore CP System To Normal Operation ... 50
Setting TIREMAAX® PRO Inflation Pressure ... 51
 Required Tools And Resources ... 51
 Checking PRO Cold Inflation Pressure .. 52
 Adjusting PRO Cold Inflation Pressure .. 52
Wiring Harness Replacement .. 54
 Replacing Premium ABS Junction Harness .. 54
Controller Assembly Replacement ... 54
 Removal .. 54
 Installation ... 54
Replacing hubcap window .. 55
Wheel Removal And Installation ... 55
Converting From CP to PRO ... 56

Appendix A: Glossary .. 56
Appendix B: Expected Performance ... 57
CONVENTIONS APPLIED IN THIS DOCUMENT
This section explains the techniques used in this document to convey important information, safety issues, how to contact Hendrickson and how to apply hyperlinks.

EXPLANATION OF SIGNAL WORDS
Hazard signal words (such as DANGER, WARNING or CAUTION) appear in various locations throughout this publication. Information accented by one of these signal words must be observed at all times. Additional notes are utilized to emphasize areas of procedural importance and provide suggestions for ease of repair. The following definitions comply with ANSI Z535.4 and indicate the use of safety signal words as they appear throughout the publication.

⚠️ DANGER: INDICATES IMMEDIATE HAZARDS WHICH WILL RESULT IN SEVERE PERSONAL INJURY OR DEATH.

⚠️ WARNING: Indicates hazards or unsafe practices which could result in severe personal injury or death.

⚠️ CAUTION: Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

NOTICE: Indicates hazards or unsafe practices which could result in damage to machine or equipment.

IMPORTANT: An operating procedure, practice or condition that is essential to emphasize.

Safety alert symbol used to indicate a condition exists that may result in personal injury or harm to individuals. It must be applied to DANGER, WARNING and CAUTION statements which emphasize severity.

LINKS
This document includes links that can be applied when viewed electronically. Links are identified by a dark grey line under the linked text.

GENERAL SERVICE NOTES

IMPORTANT: Special attention should be paid to the information included in EXPLANATION OF SIGNAL WORDS.

Before you begin:
Read, understand and comply with:

• All instructions and procedures.
• All signal word (CAUTION, WARNING and DANGER) statements to help avoid personal injury or property damage.
• Company’s maintenance, service, installation and diagnostic practices.
• Vehicle manufacturer’s safety instructions when working on the vehicle.
• Vehicle manufacturer’s instructions for recommended practices not described in this manual.
• Local safety regulations.

DURING SERVICE:

• Work must be carried out by trained personnel.
• Sudden release of tensioned springs (e.g. the spring brake part of the brake chamber or the brake return spring) may cause injury.
• Use recommended tools only.
• Before releasing trailer back into service, perform operational checks and test the trailer to make sure brakes are working correctly.

NOTICE: While the trailer parking brakes are engaged, TIREMAAX® PRO delivery air pressure exhausts to zero psi. Wheel valves close to isolate tires from the system.

⚠️ WARNING: While servicing the TIREMAAX PRO system, it may be necessary to disengage the trailer parking brakes to allow the controller to function. Trailer wheels must be chocked during these procedures.

Hendrickson reserves the right to make changes and improvements to its products and publications at any time. Consult the Hendrickson website (www.hendrickson-intl.com) for the latest version of this manual.
IMPORTANT SAFETY NOTICES

Proper maintenance, service and repair is important to the reliable operation of the suspension system and components. The procedures recommended by Hendrickson and described in this publication are methods of performing inspection, maintenance, service and repair.

The warnings and cautions should be read carefully to help prevent personal injury and to assure that proper methods are used. Improper maintenance, service or repair can cause damage to the vehicle and other property, personal injury, an unsafe operating condition or void the manufacturer’s warranty.

Carefully read, understand and follow all safety related information within this publication.

⚠️WARNING: DO NOT modify or rework parts. Use ONLY Hendrickson authorized replacement parts. Use of substitute, modified or replacement parts not authorized by Hendrickson may not meet Hendrickson’s specifications. It can also result in failure of the part, loss of vehicle control and possible personal injury or property damage. Do not modify parts without written authorization from Hendrickson.

⚠️WARNING: Always wear proper eye protection and other required PPE (personal protective equipment) when performing vehicle maintenance, repair or service. Follow federal, state and local regulations as appropriate.

⚠️WARNING: Solvent cleaners can be flammable, poisonous and can cause burns. To help avoid serious personal injury, carefully follow the manufacturer’s product instructions and guidelines and the following procedures:

- Wear proper eye protection.
- Wear clothing that protects your skin.
- Work in a well ventilated area.
- DO NOT use gasoline, or solvents that contain gasoline. Gasoline can explode.

- Hot solution tanks or alkaline solutions must be used correctly. Follow the manufacturer’s recommended instructions and guidelines carefully to help prevent personal accident or injury.

⚠️WARNING: The following precautions and considerations should be applied when handling brake lining:

- Compressed air or dry brushing should never be used for cleaning brake assemblies or work area.
- Follow applicable shop, local, state and federal safe practices for working with and disposal of brake lining materials.
- Hendrickson recommends that workers doing brake work should take steps to minimize exposure to airborne brake lining particles. Proper procedures to reduce exposure include working in well ventilated areas, segregation of areas where brake work is done, use of local filtered ventilation systems or use of enclosed cells with filtered vacuums.
- Material Safety Data Sheets (MSDS) on this product, as required by OSHA, are available online from Hendrickson.

⚠️CAUTION: A mechanic using a service procedure or tool which has not been recommended by Hendrickson must first satisfy himself that neither his safety nor the vehicle’s safety will be jeopardized by the method or tool selected. Individuals deviating in any manner from the provided instructions assume all risks of consequential personal injury or damage to equipment.
NOTICE: When welding to or on the axle, take every caution to prevent bearing damage. When grounding welding equipment to axle, prevent current from passing through the wheel bearings.

A connection that places a wheel bearing between the ground cable connection and the weld area can damage the bearing by electric arcing.

For more safety and precautionary statements, refer to Hendrickson literature number T12007, available at www.Hendrickson-intl.com/TrailerLit.

CONTACT HENDRICKSON
Contact Hendrickson Trailer Technical Services for technical assistance as needed. To do so, several options are available, however, some preparation is recommended.

Prior to contacting Technical Services, gather the following applicable information about your Hendrickson suspension:

- Suspension ID Tag information (Refer to Hendrickson Lit. No. L977 ID Guide, page 2 for tag location and details):
 - Suspension model number
 - Suspension serial number
 - Approximate number of suspension miles.
- Vehicle VIN number. Refer to trailer OEM manual for VIN plate location.
 - Trailer Type (van, reefer, flat bed, etc.)
 - Manufacturer
 - VIN (vehicle identification number)
 - In-service date
- If applicable, description of the system problem, part number and/or part description of the reported non-functioning part.
 - Date of failure
 - Where applicable: location of problem on suspension / trailer; e.g., road side, front axle, rear axle, curb side rear, etc
 - Symptoms-
 » Systems, components or function effected by failure.
 » When does failure occur?

» How often do they occur?
» Etc.

- What troubleshooting and/or measurements have been performed?
- What service data literature do you have or need?
- Digital photos of suspension and damaged areas.
- Special application approval documentation (if applicable).

EMAIL
For Hendrickson Trailer Technical Services, use the following e-mail address:

HTTS@Hendrickson-intl.com

PHONE
Contact Hendrickson directly in the United States or Canada at 866-RIDEAIR (743-3247). From the menu, select:

- Technical Services/Warranty.

Other choices include:
- Aftermarket Sales for replacement parts information and ordering.
- Original Equipment Sales for parts inquiries and ordering for trailer manufacturers.

LITERATURE
If you suspect your version of this or any other Hendrickson manual is not “Up-to-Date”, the most current version is free online at:

www.Hendrickson-intl.com/TrailerLit

Available Hendrickson documentation can be viewed or downloaded from this site.

Other relative literature may include:

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>L583</td>
<td>Comprehensive Warranty Statement (US and Canada)</td>
</tr>
<tr>
<td>L878</td>
<td>TIREMAAX® Parts List</td>
</tr>
<tr>
<td>L995</td>
<td>TIREMAAX® CP Installation, Service and Troubleshooting Procedures (applies to TIREMAAX CP systems purchased prior to April 2012)</td>
</tr>
<tr>
<td>T50018</td>
<td>TIREMAAX® Manual Tire Check Decal</td>
</tr>
<tr>
<td>T51003</td>
<td>TIREMAAX® CP & PRO Installation Poster</td>
</tr>
<tr>
<td>T52001</td>
<td>ToolBox Tip: TIREMAAX PRO - Setting Target Pressures</td>
</tr>
</tbody>
</table>

Table 1: Relative literature

1 If the in-service date is unknown or not available, the vehicle date of manufacture can be substituted.
PREPARING TRAILER FOR SERVICE

NOTE: DO NOT service a suspension or any components that are under warranty without first contacting Hendrickson Technical Services. Refer to CONTACT HENDRICKSON for details.

⚠️WARNING: To prevent serious eye injury, always wear safety glasses when performing trailer maintenance and service.

![Figure 1: Trailer preparation](image)

Before beginning any work on a trailer suspension system, the following steps help to ensure conditions are safe. Refer to GENERAL SERVICE NOTES on page 4.

1. Park trailer on a level, debris-free surface.
2. Set trailer parking brakes.
3. To prevent the trailer from moving, chock wheels on axle not being raised.
4. Exhaust air from the trailer suspension.
5. Release trailer parking brakes.
6. If necessary, using a jack, raise trailer until wheels clear the work surface.
7. Support raised trailer with safety stands.

⚠️WARNING: Do not work under a trailer supported only by jacks. Jacks can slip or fall over, resulting in serious personal injury.
GENERAL INFORMATION
This section includes a general overview of the information included in this manual and TIREMAAX® PRO and CP systems.

ABOUT THIS MANUAL
This manual is provided to support Hendrickson TIREMAAX PRO and TIREMAAX CP tire inflation systems. The manual provides the following information:
• General Information
• Operation
• Components
• Installation
• Service
• Troubleshooting
• Glossary
• Appendices

SYSTEM OVERVIEW
The Hendrickson TIREMAAX tire inflation system is available in two versions: TIREMAAX PRO and TIREMAAX CP. System highlights include:
• TIREMAAX CP is capable of inflating tires found to be below a target pressure.
• TIREMAAX PRO inflates low pressure tires, but also has the ability to relieve pressure from over-inflated tires, as well as equalize pressure across all wheel positions.

FEATURES
Features include:
• Indicator lamp (Figure 4 on page 11) that illuminates when regulated air flow exceeds the designed threshold. This occurs while tires are inflating or there is a system leak.
• Tire pressure is continuously and automatically held at the desired Inflation Pressure.
• Does not pressurize axle tube (helps prevent contamination of seals).
• In-axle filter prevents hub contamination and allows any wheel-end air leaks to evacuate through the axle vent.
• Seal and line leaks will not pressurize wheel-ends.
• No venting at wheel-end helps prevent contamination from entering hub cap.
• Integrated valves isolate tires from system when there is a problem (e.g. damaged or flat tire).
• The rotary union is incorporated in the hubcap assembly for simpler installation and service.
• Manual pressure check or fill is available through tire hoses at the hubcap.
• Inflates tires and detects leaks.
• Air supply valve includes a screen that prevents debris from entering system and helps keep lines and seals clean.
• Tire Inflation Pressure set to OE specifications.
• TIREMAAX PRO includes a Deflation Pressure that is preset greater than the Inflation Pressure. Excess pressure above the Deflation Pressure is exhausted.

SYSTEM SPECIFICATIONS
Unless otherwise specified, specifications listed apply to both TIREMAAX PRO and CP.

<table>
<thead>
<tr>
<th>SPECIFICATION</th>
<th>US</th>
<th>METRIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP tire pressure setting</td>
<td>70 to 120</td>
<td>482 to 827 kPa</td>
</tr>
<tr>
<td>PRO tire pressure setting</td>
<td>85 to 120</td>
<td>586 to 827 kPa</td>
</tr>
<tr>
<td>Pressure check interval</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>Minimum operating voltage</td>
<td>9 volts</td>
<td></td>
</tr>
<tr>
<td>Indicator lamp current range</td>
<td>50 mA to 1 A</td>
<td></td>
</tr>
<tr>
<td>Inflate capacity (one tire in approximately two minutes)</td>
<td>10 psi</td>
<td>69 kPa</td>
</tr>
</tbody>
</table>

Table 2: TIREMAAX® PRO and CP general specifications
Figure 2: TIREMAAX® components (PRO controller shown)
COMPONENT DESCRIPTION
This section includes a brief overview of TIREMAAX® PRO and CP components. Refer to Figure 2 on previous page.

TIREMAAX® CONTROLLERS
The controllers in the TIREMAAX systems control Inflation Pressure and provide protection in case of tire or system leaks. Two versions are currently available:

- **CP** Provides constant pressure to tires for inflation only.
- **PRO** Provides tire inflation, same as CP, but also provides a deflation feature.

CONTROLLER DETAILS:
- Externally mounted on structure under the trailer (Refer to Figure 32 on page 26):
 - Include mounting flanges integral to enclosure.
 - Can be mounted on new or existing trailers.
 - Sealed lid protects internal components from environment.
- Internal components include:
 - **Pressure regulator**
 » Regulates air flow from trailer air tank to tires.
 » Regulated pressure is set to match the desired cold tire Inflation Pressure.
 - **PRM (Pressure Relief Module, PRO only)**
 » Relieves tire pressures that are 10 psi (69 kPa) above Inflation Pressure.
 » Includes PRM set screw for setting Deflation Pressure. Excess pressure is dumped out the PRM exhaust vent, located on the bottom side of the valve body below the PRM.
 - **(PRO Only) Test port** for connecting Hendrickson TIREMAAX calibration tool and test port vent.
 - **(PRO Only) Test port vent** used in INDICATOR LAMP TEST on page 47 for newer models.
- External connections:
 - **Supply port** provides air from the trailer air tank.
 » Supply valve allows isolation of trailer air tank pressure for maintenance and other service functions.
 » Inlet screen reduces contamination from air supply.
 - **Delivery port** feeds regulated air pressure through air hoses and hubcaps to tires.
 - **Petcock valve** (included on CP and older PRO models) allows trailer-mounted indicator lamp functionality to be tested. See INDICATOR LAMP TEST on page 47.
 - **(PRO only) Emergency (parking) brake port**
 Functioning similar to a pilot valve, this input controls the operation of the exhaust valve. This feature:
 » Isolates TIREMAAX PRO components from supply (tank air).
 » Maintains tire pressure while the trailer is idle for extended periods of time.

NOTICE: While the trailer parking brakes are engaged, delivery air pressure exhausts to zero psi in the delivery air lines only. Hubcap wheel valves close to isolate wheels from the system.

WARNING: While servicing the TIREMAAX PRO system, it may be necessary to disengage the trailer parking brakes to allow the controller to function. Trailer wheels must be chocked during these procedures.

HUBCAP
Although the same casting is used for each hubcap, TIREMAAX PRO will have the word “PRO” on the hubcap window. Each hubcap is configured and assembled to match the requirements of the application (spindle type, PRO or CP, grease or oil). Hubcap variations are listed in L878 TIREMAAX Parts List.

This assembly:
- Integrates important components relative to TIREMAAX PRO and CP systems.
- Seals and protects wheel-end components.
- Connects air system from stationary axle to rotating hub and wheels.
- Includes factory assembled integrated components:
 - **Rotary union** that connects rotating hubcap directly to stationary axle hose.
 - **(PRO only) Hubcap wheel valves**
 » Identified by red anodized adapter plate inside hubcap.
 » Assumes function of tire hose check valve.
Hubcap check valve -
- Close to isolate system and tire when tire hoses are disconnected.
- Color and function differences between CP and PRO:
 - **Silver** - The CP valve allows air flow into the tires only. The tire hose check valve is not defeated.
 - **Red** - Designed to hold the tire hose check valve open while tire hose is connected to the hubcap port. This allows air to flow both directions for inflation and deflation.
- Window (Includes “PRO” to identify TIREMAAX® PRO version.)

AXLE HOSES AND FITTINGS
- Provide an air passage from the controller, through the axle(s), to the hubcap.
- Allows axle to remain non-pressurized.

Refer to Figure 11 through Figure 42 for a complete description of air hoses and fittings.

SPINDLE PLUG AND GROMMET
- Provides air pressure vent (breather hole) for wheel-end during normal use and in the event of increased pressure.
- Restrains and positions the axle hose in hubcap and spindle.

TIRE HOSES
- Do not require modification to the standard valve stem or core.
- Allow for manual pressure check and fill at the hose end. Refer to MANUALLY CHECK TIRE PRESSURE on page 48.

INDICATOR LAMP
The indicator lamp is controlled by the flow switch in the controller regulator. The lamp:
- Provides a means for the driver to check system status.
- Used during testing and calibration to indicate air flow through system.
- Under some circumstances can be used to identify a leak in the system. Refer to TROUBLESHOOTING on page 38.
OPERATION
TIREMAAX® PRO and CP function similarly for tire inflation. Deflation is a function of TIREMAAX® PRO only. No operation is required by the driver/operator for either system to function normally. However, the Indicator Lamp should be monitored to verify system function and integrity. The Indicator Lamp is located in the front of the trailer (Figure 4 on page 11) or in a location within view of the driver from the cab.

TIREMAAX® FUNCTIONAL DIAGRAMS
For TIREMAAX CP (Figure 5), tire hose check valves prevent tire air pressure from feeding back to the controller and isolate wheels should a blow-out occur.

For TIREMAAX PRO (Figure 6), when connected to a PRO hubcap, tire hose check valves are manually held open to allow two way air flow. Hubcap wheel valves prevent tire air pressure from falling below the run-flat setting. For more details, refer to HUBCAP on page 10.
TIRE INFLATION

The TIREMAAX system is set to a specified Inflation Pressure for inflation. As long as the pressure in the trailer air tank is above the desired Inflation Pressure, the controller will continuously supply and maintain tire pressure at target.

NOTE: For the TIREMAAX controller to function properly, trailer air must be clean, dry and tank pressure must be greater than the tire Inflation Pressure. The controller cannot supply pressure above the available air tank pressure.

When functioning normally, the trailer air tank will supply air pressure to the TIREMAAX controller. The controller will deliver regulated air to pressurize air lines and tires to the specified Inflation Pressure. For TIREMAAX PRO, all check valves are held open. This allows air to flow in both directions with the same psi throughout the system.

If tires are low, air from the trailer air tank will continue to inflate tires to the Inflation Pressure. Delivery (regulated) air flowing from the controller to air lines and tires may cause the indicator lamp to remain lit until the specified Inflation Pressure is reached. The controller delivers constant pressure to lines and tires to maintain Inflation Pressure.

If there is a tire leak or leak in the lines, the indicator lamp may or may not remain on. Refer to TROUBLESHOOTING on page 38.

- If the indicator lamp (Figure 2) remains illuminated for more than 10 minutes, the system is attempting to inflate the tires but may not be able to adequately maintain proper tire pressure. The operator should stop and check the tires to determine if it is safe to continue to operate the vehicle and should seek service at the next opportunity.
- The remaining tires are protected from pressure loss by integral valves located in each tire hose or hubcap.

TIRE DEFLATION (TIREMAAX PRO only)

A common cause of pressure variance in tires is temperature (Figure 59 on page 57). Tire temperature and pressure can rise when:

- Transporting from cold to warm or hot weather.
- Inflating while cold, then tires heat up during operation of the trailer.
- Tire temperature increases with speed.
- Tire pressure is affected by a change in elevation.

Deflation Pressure is set at a fixed value greater than the Inflation Pressure. If the tire pressure increases above this setting, the TIREMAAX PRO controller will exhaust air and maintain pressure at this higher value.

Cooling tires may result in tire pressure dropping below the Inflation Pressure while parked. This may illuminate the indicator lamp at start-up. Refer to APPENDIX B: EXPECTED PERFORMANCE on page 57 for examples of temperature effects on tire pressure.
INSTALLATION
Installation of TIREMAAX® PRO and CP systems can be done on new or existing axles. For application and installation questions, refer to CONTACT HENDRICKSON on page 6.

INSTALLATION MATERIALS AND SUPPLIES
In addition to the hardware provided, the installer shall provide the following:
• Controller assembly mounting bolts (Figure 32 on page 26)
• PPV, Pressure Protection Valve.
• Indicator lamp and wire, if not configured as part of TIREMAAX kit (Figure 44 to Figure 45).
• Spindle plug driver and handle 2 (Figure 20 on page 21), unless the spindle plugs are already installed in the axle from the factory.
• Air lines and fittings as defined in Figure 37 to Figure 42.

INSTALLATION INTRODUCTION
Installation procedures are divided into sections relative to installation requirements of both suspension and trailer. Refer to Table 3, below, to determine the best starting point for your application.

<table>
<thead>
<tr>
<th>IF</th>
<th>START AT</th>
</tr>
</thead>
<tbody>
<tr>
<td>New system with nothing installed</td>
<td>Axle Preparation</td>
</tr>
<tr>
<td>Axles are pre-drilled but no TIREMAAX hardware has been installed</td>
<td>Axle Component Installation on page 17</td>
</tr>
<tr>
<td>Axle hose and spindle plugs are already installed, but undressed</td>
<td>HUBCAP INSTALLATION on page 22</td>
</tr>
<tr>
<td>System hardware is already installed on a dressed axle</td>
<td>TIRE HOSE INSTALLATION on page 24</td>
</tr>
</tbody>
</table>

Table 3: Installation starting points

AXLE PREPARATION
The first stage of TIREMAAX installation is axle preparation. Starting with Figure 7, this section defines procedures for drilling holes and other steps required to prep a Hendrickson axle to receive hoses and fittings.

NOTE: The TIREMAAX system is compatible with most spindle nut systems. To avoid interference when using a castle (cotter pin-locked) spindle nut system, the use of an extended hubcap is required. The cotter pin cannot be longer than one inch.

WARNING: Chock all wheels before beginning this installation procedure. Never work under a vehicle supported ONLY by a jack. Refer to PREPARING TRAILER FOR SERVICE on page 7 for details.

Figure 7: Axle spindle identification

1. Chock wheels to keep trailer from moving according to PREPARING TRAILER FOR SERVICE on page 7.
2. If the wheel-end is oil lubricated, drain oil from the hubcap and discard oil.
3. Remove hubcap bolts and hubcap.
4. Remove spindle plug from the spindle.
5. Remove in-axle filter.
6. Inspect spindle plug bore and remove any burrs or sealant.

Components unique to TIREMAAX® are available only from Hendrickson.
7. **Check** inside of spindle to ensure there is a passage through the axle to allow installation of air lines.

8. Select and complete this step for your axle type:

 A. **For all** TIREMAAX® prep**e**d INTRAAX® and VANTRAAX® suspensions - locate the three ¼ inch pipe plugs in the axle wrap windows, remove the plugs and proceed to AXLE COMPONENT INSTALLATION on page 17. If the axle does not have pre-drilled holes in the axle wrap windows, proceed to Step 9 for hole drilling details.

 B. **For Hendrickson TRLAXLE® Trailer Axles** - locate the three ¼ inch pipe plugs in the middle of the axle, remove the plugs and proceed to the AXLE COMPONENT INSTALLATION on page 17. If the axle does not have three pre-drilled holes in the middle of the axle, proceed to Step 9 for hole drilling details.

9. Using the information in Figure 8 or Figure 9, drill and tap three ¼ inch - 18 NPT holes in the axle wrap windows (on INTRAAX® and VANTRAAX® suspensions) or at the midpoint of the axle (on Hendrickson TRLAXLE Trailer Axles).

 NOTE: In most cases, it will be necessary to remove the slack adjuster and camshaft to gain access to the approved drilling area on INTRAAX and VANTRAAX suspensions. Refer to Hendrickson publication L496, Wheel-End Maintenance Procedures (available at www.hendrickson-intl.com/TrailerLit), for complete slack adjuster and camshaft removal instructions.

10. **Remove** the debris generated by the drilling and tapping operations from inside the axle before proceeding with AXLE COMPONENT INSTALLATION on page 17.

IMPORTANT: As shown above, the edge of any hole must be a minimum of ½ inch (12 mm) away from the edge of the fillet weld that surrounds the wrap window.

NOTE: If pre-drilled by Hendrickson, the second hole in the window wrap is on the roadside and accommodates an axle vent assembly. These holes must be within the approved drilling area, but spaced far enough apart to allow 90° elbow fittings to be threaded into them.
NOTICE: Before drilling, make sure holes will not interfere with suspension mounting method. If hole will interfere, contact Hendrickson Technical Services using CONTACT HENDRICKSON on page 6.

NOTE: Figure 9 drilling details are for Hendrickson TRLAXLE®. If other than TRLAXLE, CONTACT HENDRICKSON.

NOTE: Tapered (HN) spindle shown, but procedure is the same for parallel (HP) spindle.
AXLE COMPONENT INSTALLATION

Refer to the following assembly procedures to complete the installation of the TIREMAAX® tire inflation system. Component installation procedures include:

- AXLE HOSE INSTALLATION on page 17
- ADDITIONAL AXLES on page 18
- AXLE VENT INSTALLATION on page 20
- SPINDLE PLUG INSTALLATION on page 20
- HUBCAP INSTALLATION on page 22
- TIRE HOSE INSTALLATION on page 24

AXLE HOSE INSTALLATION

Follow this procedure to install the axle hose in the pre-drilled hole, through the axle and to the rotary union in the hubcap.

IMPORTANT: The axle hose for TIREMAAX CP systems installed prior to March 2012 included an air flow choke. If retrofitting from CP to PRO, these axle hoses must be replaced.

1. On the end of the axle tube with two ¼ inch holes in the wrap window (on INTRAAX® and VANTRAAX® suspensions), route the small end of the metal braided hose into the hole closest to the spindle (Figure 10). On Hendrickson TRLAXLE® non-integrated trailer axle, route the small end of the metal braided hose into the hole closest to the spindle.

2. Making sure hose heads toward the spindle end, continue feeding metal braided hose into the axle tube until small end of the hose exits spindle end.

3. Thread the large adapter end of axle hose assembly into axle.

4. Tighten fitting to 20 ft. lbs. (27 Nm) of torque (Figure 11).

5. Feed metal braided hose through slit in filter.

6. Push axle filter into spindle cavity (Figure 11).

IMPORTANT: Enough air space must be present between spindle plug and filter to allow sufficient axle ventilation.

7. Remove protective coverings from end of axle hose assembly and blow air through hose assembly to remove any debris.

Repeat Step 1 through Step 7 on each axle and wheel-end. For axle vent installation, (Figure 11), refer to AXLE VENT INSTALLATION on page 20.
90° SUPPLY FITTING INSTALLATION

1. Thread 90° supply fitting into each axle hose as shown in Figure 11.
2. Tighten fitting to 10 ft. lbs. (13 Nm) of torque.
3. Clock fitting, in tightening direction only, for applicable suspension. See Figure 12 to Figure 16.
4. If applicable, cover fitting with vinyl cover to keep out paint and contaminants.

ADDITIONAL AXLES

For systems with one, two or more additional axles, observe the installation requirements as shown in the following diagrams (Figure 12 to Figure 16). Extend the main 3/8 inch tubing as necessary.

IMPORTANT: Long length air lines increase reaction time to pressure fluctuations. A second TIremaax® system may be required to support 5 or more axles. CONTACT HENDRICKSON for details.

** On top mount, wide bushing, standard duty models without SURELOK®, it is permissible to route the control line through either hole in suspension beam. Just orient the axle connector fitting to obtain the best slack adjuster / air line clearance.

** It is the OEMs responsibility to route air lines and orient axle connector fittings so as to eliminate interference between slack adjusters and air lines. Lines should be protected against chaffing when passing through or by metal edges.

Figure 12: Suggested control line installation details for Top Mount, Wide Bushing, Standard Duty Models AAT, HKAT

Figure 13: Suggested control line installation details for Top Mount, Narrow Bushing, Standard Duty Models AANT, HKANT, AAZNT
Figure 14: Suggested control line installation details for Low Ride, Wide Bushing, Standard Duty \textit{AAL, HKAL, AAZL}; Low Ride, Wide Bushing, Extreme Duty \textit{AAEDL 30K} and Top Mount, Wide Bushing, Extreme Duty \textit{AAEDT 30K} Models

Figure 15: Suggested control line installation details for Low Ride, Short Beam, Narrow Bushing, Standard Duty Models \textit{AANL S 20K}

Figure 16: Suggested control line installation details for Low Ride, Narrow Bushing, Standard Duty Models \textit{AANL, HKANL}

** It is the OEM's responsibility to route air lines and orient axle connector fittings so as to eliminate interference between slack adjusters and air lines. Lines should be protected against chaffing when passing through or by metal edges.

NOTE: INTRAAX® / VANTRAAX® suspension shown, but axle vent installation is the same for Hendrickson Trailer Axles. On these axles, the vent tube is installed in the center hole (refer to Figure 9).

Figure 17: Typical axle vent installation

- High Flow Axle Vent with check valve
- ½ inch diameter clear plastic tube oriented downward
AXLE VENT INSTALLATION
The High Flow Axle Vent is installed in the previously drilled hole as shown in Figure 17. Refer to Axle Preparation on page 14 for drilling details.

NOTICE: To prevent contamination of the axle, ensure High Flow Axle Vent is securely fastened and vent tube points down.

WARNING: Failure to properly install axle vent may result in wheel-end pressurization and/or water ingestion. This could cause wheel-end failure resulting in severe personal injury or death.

1. Install axle vent into hole provided in axle (Figure 17 on page 19) and hand-tighten.

 - Clamp
 - Barb fitting
 - Paint plug
 - Vent body
 - Vent tube

 ![Figure 18: High Flow Axle Vent Assembly]

2. Using a 1 inch socket, tighten vent body to 10 ft. lbs. (13 Nm) of torque, then rotate to aim tube fitting downward as shown in Figure 17.

3. If necessary, use 1 inch wrench to adjust vent body and tube to point downward after torquing.

4. Remove and discard paint plug (if present).

SPINDLE PLUG INSTALLATION
Follow this procedure to install a spindle plug at the end of each spindle.

1. Orient spindle plug as shown in Figure 20 and install grommet pointing into spindle.

2. Thread brass fitting of axle hose through grommet.

3. With spindle plug breather hole oriented toward the pivot bushing (Figure 20), place plug assembly against the spindle end.

4. With axle hose brass fitting centered in the plug driver, press plug into spindle end until driver bottoms on end of spindle.

Repeat Step 1 through Step 4 for each wheel-end.

NOTE: The recommended plug driver (refer to the table in Figure 20) regulates the correct installation depth as shown in Figure 21. If using the tool, be sure to select the correct tool size for your application.

Hendrickson recognizes that the tool may not always be available or cost effective. For this reason, Figure 21 provides the recommended depth dimensions.

NOTE: For TRLAXLE® the vent tube (Figure 19) is different from that in Figure 18 and curves to point downward from the top of the axle. It can be rotated with the hose in the shipped position during installation.

2. Using a 1 inch socket, tighten vent body to 10 ft. lbs. (13 Nm) of torque, then rotate to aim tube fitting downward as shown in Figure 17.

3. If necessary, use 1 inch wrench to adjust vent body and tube to point downward after torquing.

4. Remove and discard paint plug (if present).
Installation, Service and Troubleshooting Procedures

NOTE: Tapered (HN) spindle shown, but procedure is the same for parallel (HP) spindle.

Orient spindle plug breather hole toward pivot bushing

Plug driver handle

Spindle plug with grommet. Breather hole is oriented toward pivot bushing

Plug Driver and Handle Assembly Ordering Information

<table>
<thead>
<tr>
<th>ITEM</th>
<th>NAME</th>
<th>SPINDLE TYPE</th>
<th>"A" DIMENSION</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plug Driver</td>
<td>HN</td>
<td>1.75 inches</td>
<td>S-28146-1</td>
</tr>
<tr>
<td>1</td>
<td>Plug Driver</td>
<td>HP</td>
<td>2.75 inches</td>
<td>S-28146-3</td>
</tr>
<tr>
<td>2</td>
<td>Plug Driver Handle</td>
<td>N/A</td>
<td>N/A</td>
<td>S-27399</td>
</tr>
</tbody>
</table>

Before March 28, 2003, Hendrickson manufactured HP spindles with both 2.50" and 2.75" inner bore diameters. After this date, the HP spindle bore was standardized at 2.75".

Figure 20: Spindle plug installation

A = 0.632" (1.6 cm)
B = 1.072" (2.72 cm)
C = 0.894" (2.27 cm)

Figure 21: Recommended spindle plug depth (if not using plug tool shown in Figure 20)
HUBCAP INSTALLATION

IMPORTANT: Once installed, **DO NOT remove hubcap.**

To protect warranty on Hendrickson dressed axles, skip to **TIRE HOSE INSTALLATION** on page 24. CONTACT HENDRICKSON Technical Services before removing any Hendrickson assembled wheel-end components.

Three basic hubcap types, table below, are available. Hubcap installation is the same for each (refer to HUBCAP on page 10 for more hubcap options).

<table>
<thead>
<tr>
<th>SPINDLE TYPE</th>
<th>HUBCAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>HN</td>
<td>HN</td>
</tr>
<tr>
<td>HP</td>
<td>HP</td>
</tr>
<tr>
<td>HP with castle nut system</td>
<td>HP extended</td>
</tr>
</tbody>
</table>

Table 4: Basic hubcap types

To install the hubcap:

1. Draw just enough axle hose out from center of spindle to attach axle hose fitting to the rotary union inside the hubcap (Figure 22).

2. Place hubcap gasket over axle hose for later positioning.

 NOTE: Shaft has pre-applied dry thread locker. Loctite® or other thread locking compound is not required.

3. Hand thread rotary union onto axle hose fitting. **DO NOT rotate axle hose fitting.**

4. Similarly to Figure 22, applying an inch-pound torque wrench on the 7/16 inch flats on rotary union shaft and 3/8 inch wrench on the flats of the axle hose fitting, tighten connection to 50±5 in. lbs. (5.7±0.6 Nm) of torque.

 NOTICE: For clocking of tire hose positioning, review **TIRE HOSE INSTALLATION** on page 24 before proceeding.

5. Place two opposing bolts in hubcap and align gasket to bolts.

6. Orient hubcap for best tire hose positioning (Figure 25 on page 23) and align holes with hub face threaded holes. Hand-tighten the two bolts.

7. Install remaining four hubcap bolts and hand-tighten.

8. Torque hubcap bolts in the order shown in above figure. Torque is 15±3 ft. lbs. (20.3±4.1 Nm).

 Repeat procedure for each wheel-end.

 NOTE: If oil lubricated wheel-end, oil can be added **after hubcap is installed** and before installing tire hoses. For details on wheel-end lubrication, refer to L496 or OE documentation.

 The oil-fill plug comes loosely installed from the factory in the hubcap port. This plug must be tightened to prevent wheel-end lubricant from leaking out of the hub.
NOTE: When the wheel is installed, verify:

- Tire hose is not stretched so tightly a strain is introduced at either the valve stem or hubcap.
- Make sure the tire hose is not so loose it contacts the wheel.
- Check to ensure no portion of the tire hose extends out past the wheel.

Figure 25: Properly clocking hubcap and wheels to prevent tire hose damage during operation
TIRE HOSE INSTALLATION
Tire hoses connect the hubcap port to the valve stem on the tire.

NOTICE: During installation and operation, NO PART OF THE TIRE HOSE CAN EXTEND LATERALLY BEYOND THE HUBCAP.

This procedure applies to both dual and super single installations and assumes the wheel is off during the TIREMAAX® installation. If wheel is on and properly clocked, go to Step 2.

1. Using two lug nuts, mount wheel on hub with the rotation clocked for best tire hose placement (Figure 25).

 NOTICE: The wheel must be properly “clocked” to the hubcap to prevent the hoses from rubbing on the wheel (Figure 25) and extending beyond hubcap.

2. Remove nylon port plugs from tire hose ports using a Torx T45 driver and discard. For single tire applications remove one plug, for dual tire applications remove both plugs.

3. Attach the tire hose(s) directly to the tire valve stem(s). Do not use valve stem extenders.

4. Tighten the tire hose/valve stem connection finger tight (Figure 26).

5. Using a 7/16 inch wrench, tighten the tire hose / valve stem connection an additional one-half turn (Figure 26). Do not overtighten this connection.

 NOTE: If using a torque wrench, tighten to 28±2.0 in. lbs. (3±0.0 Nm) of torque.

6. Ensure hose connections are tight enough that, when moving the hose back and forth, it does not cause the connection to move.

 IMPORTANT: Hold tire hose with free hand to prevent side loading and avoid cross threading. The knurled nut should easily turn 3 to 4 rotations by hand. Any drag before 3 turns suggests cross threading.

7. Loosely connect other end of tire hose(s) (Figure 27 for dual or Figure 28 for super-single) to the outlet port of the hubcap and check to ensure hose(s) meet criteria of Figure 24 and Figure 25.

 If not:
 A. Disconnect tire hose(s) at hubcap only.
 B. Remove lug nuts and wheel.
 C. Adjust clocking of wheel, then repeat Step 1 through Step 5 as needed.

8. Once properly clocked, install remaining lug nuts and tighten all to manufacturer’s specifications.

9. Hand-tighten hubcap connection(s) from Step 5. Using pliers, carefully and gently verify the hose connection is tight.

 NOTICE: Do not overtighten the knurled tire hose nut or damage knurled finish. Doing so will make tire hose removal extremely difficult for service requirements.
10. Repeat procedure for remaining wheel-ends.

Tire hose installation tips
(Refer to Figure 24 and Figure 25 on page 23 for examples):
A. Route tire hoses inside rim area (Figure 24).
B. To further restrain tire hoses within rim area and take up slack, "clock" wheel rotation relative to hubcap position (Figure 25).
C. Valve stem orientation is not critical to TIREMAAX® performance as long as the hose is routed as noted in Figure 25.
D. For dual wheel configurations, proper clocking is particularly important since the two wheels (inner and outer) must be properly oriented, with valve stems on opposite sides, for proper installation.
E. Super single wheels, view C of Figure 25 and Figure 28, require only one tire hose. Positioning the hubcap port 90° from the valve stem provides optimum fit. The unused port (on the side with the oil-fill plug) will be plugged.

NOTE: This plug must be tightened to prevent wheel-end lubricant from leaking out of the hub.

CONTROLLER INSTALLATION
The following criteria is recommended when locating and mounting the controller assembly:
• Protect the controller and air lines from flying debris.
• Provide a secure and stable mounting surface.
• Allow access for maintenance.
• Provide easy access to a reservoir, emergency air supply line and delivery lines.
• Mount with door hinge at top, with room to open door and (if included) petcock pointing down.
• If required, use the hole pattern shown in Figure 29.
• Use a minimum of four 5/16 inch bolts, washers and nuts.
• **DO NOT** weld to slider box. Holes are provided for fastening brackets and other components as needed. Holes can be drilled as defined in the following methods.

<table>
<thead>
<tr>
<th>DIM. INCH</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>8.12</td>
</tr>
<tr>
<td>C</td>
<td>6 x 0.32 DIA</td>
</tr>
</tbody>
</table>

Figure 29: Controller box hole pattern

The methods of mounting is determined by the type of suspension and trailer. Refer to the applicable method A, B, C or D.

A. Hendrickson K-2® slider box mounting (Figure 30, mounted low to avoid interference with slider stop bar). Four holes (two pair) are pre-drilled in the crossmember for this purpose.

NOTICE: Failure to properly orient the controller and mounting bracket, as shown below, will result in slider stop bar interference and controller assembly damage.
B. **Flush mount** to trailer crossmember or subframe. Mount directly to (select one):
- Trailer frame, Figure 31
- Use optional bracket (Figure 32, method "C")
- OE supplied bracket

C. **Hendrickson mounting bracket** for optional drop-down mounting. Figure 32. Attach the controller to the bracket first, then mount the assembly to the trailer frame, as shown.

D. **Mounting to ULTRA-K slider** is different than VANTRAAX or K-2 slider mounting. The slider includes pre-drilled holes for mounting the TIREMAAX controller directly to crossmembers, Figure 33 and Figure 34. Holes are also provided for various other brackets and options.

MANIFOLD INSTALLATION
The optional manifold offers the following advantages:
- Simpler installation
- Improved air distribution and flow to tires; fewer fittings
- Easier troubleshooting for locating leaks
InstallatIon, servIce and troubleshooting Procedures

Tandem (four port) manifold

![Tandem manifold diagram](image)

Tridem (six port) manifold

![Tridem manifold diagram](image)

Figure 35: Manifold mounting dimensions (inch)

Figure 35 shows size and bolt hole patterns for a tandem and tridem manifold.

Mounted to slider rear crossmember

Mounted to back of OE controller bracket

Figure 36: Manifold mounted on ULTRA-A-K slider

The manifold can be located on the trailer frame, slider box or on an OE bracket as shown in Figure 36.

CONTROL LINE INSTALLATION

Controller line installation criteria varies with suspension type, axle type and TIREMAAX® model (CP or PRO).

Plumbing diagrams show air brake tubing sizes and associated fittings required to complete the system installation. Control line routing recommendations are also included. Available diagrams include:

- For CP installation refer to Figure 37 to Figure 39.
- For PRO installation refer to Figure 40 to Figure 42.
- For ADDITIONAL AXLES on page 18, refer to Figure 12 to Figure 16.

The following plumbing criteria must be followed during TIREMAAX installation:

- Use a wrench to hold axle hose fitting to prevent twisting of air line inside the axle.
- Proper TIREMAAX operation requires correct air line diameters. Installation sizes must be as shown in diagram.
- To maintain adequate air flow:
 - All air lines coming into and going out of the controller assembly must be 3/8 inch.
 - 3/8 inch line splits must decrease to two or more 1/4 inch lines to wheel-ends as shown in diagrams.
 - Only use straight or Tee fitting at delivery port.

IMPORTANT: Installing a 90° (elbow) fitting at the delivery port will restrict air flow and slow air-up time and closing of hubcap wheel valves.

Moisture and other contaminants collect at the bottom of the air tank. Do not install fittings on the bottom of the trailer air tank.
NOTE: To maintain adequate airflow, all air lines coming into and going out of the controller assembly must be ⅜ inch. All junctions of two or more ¼ inch lines must be supplied by ⅜ inch line.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Air line 1/4 inch OD nylon air brake tubing</td>
</tr>
<tr>
<td>B.</td>
<td>Axle connector 90 degree elbow, ¼ inch NPT male to ¼ inch NTA (Nylon Tubing Adapter)</td>
</tr>
<tr>
<td>C.</td>
<td>Axle hose fitting ⅛ inch NPT female</td>
</tr>
<tr>
<td>D.</td>
<td>Axle vent fitting High flow axle vent (includes check valve)</td>
</tr>
<tr>
<td>E.</td>
<td>Air line ⅜ inch OD nylon air brake tubing</td>
</tr>
<tr>
<td>F.</td>
<td>Controller IN fitting ¼ inch NPT male to ⅜ inch NTA</td>
</tr>
<tr>
<td>G.</td>
<td>Controller OUT fitting Run tee; ¼ inch NPT male, ⅛ inch NTA, ⅜ inch NTA (gauge is optional)</td>
</tr>
<tr>
<td>H.</td>
<td>Tee assembly ¼ inch NPT union tee, two ¼ inch NTA fittings and one ⅜ inch NTA fitting (four total)</td>
</tr>
<tr>
<td>I.</td>
<td>Pressure protection valve (PPV) Required; 70 PSI minimum closing pressure; existing suspension valve can be used</td>
</tr>
<tr>
<td>J.</td>
<td>PPV OUT fitting Run tee; ¼ inch NPT male, ⅛ inch NTA, ⅜ inch NTA</td>
</tr>
</tbody>
</table>

1 May be provided with Height Control Valve (HCV) or Dock Stabilizing Technology™ (DST™) kit.

Figure 37: Typical TIREMAAX® CP plumbing schematic - two axles with ⅜ and ¼ inch lines.
NOTE: To maintain adequate airflow, all air lines coming into and going out of the controller assembly must be 7/8 inch. All junctions of two or more 1/4 inch lines must be supplied by 7/8 inch line.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Air line</td>
<td>1/4 inch OD nylon air brake tubing</td>
</tr>
<tr>
<td>B. Axle connector</td>
<td>90 degree elbow, 1/8 inch NPT male to 1/4 inch NTA (Nylon Tubing Adapter)</td>
</tr>
<tr>
<td>C. Axle hose fitting</td>
<td>1/8 inch NPT female</td>
</tr>
<tr>
<td>D. Axle vent fitting</td>
<td>High flow axle vent (includes check valve)</td>
</tr>
<tr>
<td>E. Air line</td>
<td>7/8 inch OD nylon air brake tubing</td>
</tr>
<tr>
<td>F. Controller IN fitting</td>
<td>1/4 inch NPT male to 7/8 inch NTA</td>
</tr>
<tr>
<td>G. Controller OUT fitting</td>
<td>Run tee; 1/8 inch NPT male, 1/4 inch NTA, 1/4 inch NTA (three total) (gauge is optional)</td>
</tr>
<tr>
<td>H. Pressure protection valve (PPV)</td>
<td>Required; 70 PSI minimum closing pressure; existing suspension valve can be used</td>
</tr>
<tr>
<td>I. PPV OUT fitting</td>
<td>Run tee; 1/4 inch NPT male, 7/8 inch NTA, 7/8 inch NTA</td>
</tr>
</tbody>
</table>

1 May be provided with Height Control Valve (HCV) or Dock Stabilizing Technology™ (DST®) kit.

Figure 38: Typical TIREMAAX® CP plumbing schematic - single axle with 7/8 and 1/4 inch lines.
To maintain adequate airflow, all air lines coming into and going out of the controller assembly must be $\frac{3}{8}$ inch. All junctions of two or more $\frac{1}{4}$ inch lines must be supplied by $\frac{3}{8}$ inch line.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Air line $\frac{1}{4}$ inch OD nylon air brake tubing</td>
</tr>
<tr>
<td>B.</td>
<td>Axle connector 90 degree elbow, $\frac{1}{8}$ inch NPT male to $\frac{1}{4}$ inch NTA (Nylon Tubing Adapter)</td>
</tr>
<tr>
<td>C.</td>
<td>Axle hose fitting $\frac{1}{8}$ inch NPT female</td>
</tr>
<tr>
<td>D.</td>
<td>Axle vent fitting High flow axle vent (includes check valve)</td>
</tr>
<tr>
<td>E.</td>
<td>Air line $\frac{3}{8}$ inch OD nylon air brake tubing</td>
</tr>
<tr>
<td>F.</td>
<td>Controller IN fitting $\frac{1}{4}$ inch NPT male to $\frac{3}{8}$ inch NTA</td>
</tr>
<tr>
<td>G.</td>
<td>Controller OUT fitting $\frac{1}{4}$ inch NPT male to $\frac{3}{8}$ inch NTA (gauge is optional)</td>
</tr>
<tr>
<td>H.</td>
<td>Junction manifold1 $\frac{3}{8}$ inch NTA inlet, $\frac{3}{8}$ inch NTA outlets</td>
</tr>
<tr>
<td>I.</td>
<td>Pressure protection valve (PPV)2 Required; 70 PSI minimum closing pressure; existing suspension valve can be used</td>
</tr>
<tr>
<td>J.</td>
<td>PPV OUT fitting Run tee; $\frac{1}{4}$ inch NPT male, $\frac{3}{8}$ inch NTA, $\frac{3}{8}$ inch NTA</td>
</tr>
</tbody>
</table>

1 These parts are available from Hendrickson. Refer to LITERATURE on page 6 to get part numbers.

2 May be provided with Height Control Valve (HCV) or Dock Stabilizing Technology™ (DST™) kit.

Figure 39: Typical TIREMAAX® CP plumbing schematic - two axles with $\frac{3}{8}$ and $\frac{1}{4}$ inch lines and junction manifold.
IMPORTANT:

DO NOT use 90° fitting at output. This will restrict airflow.

NOTE: To maintain adequate airflow, all air lines coming into and going out of the controller assembly must be ½ inch. All junctions of two or more ¼ inch lines must be supplied by ½ inch line.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Air line</td>
<td>¼ inch OD nylon air brake tubing</td>
</tr>
<tr>
<td>B. Axle connector</td>
<td>90 degree elbow; ½ inch NPT male to ¼ inch NTA (Nylon Tubing Adapter)</td>
</tr>
<tr>
<td>C. Axle hose fitting</td>
<td>¼ inch NPT female</td>
</tr>
<tr>
<td>D. Axle vent fitting</td>
<td>High flow axle vent (includes check valve)</td>
</tr>
<tr>
<td>E. Air line</td>
<td>¾ inch OD nylon air brake tubing</td>
</tr>
<tr>
<td>F. Controller IN fitting</td>
<td>¼ inch NPT male to ½ inch NTA</td>
</tr>
<tr>
<td>G. Controller OUT fitting</td>
<td>Run tee; ¼ inch NPT male, ½ inch NTA, ¾ inch NTA (gauge is optional)</td>
</tr>
<tr>
<td>H. Tee assembly</td>
<td>Run tee; ¼ inch NPT male, ½ inch NTA, ¾ inch NTA (gauge is optional)</td>
</tr>
<tr>
<td>I. Pressure protection valve (PPV)</td>
<td>Required; 70 PSI minimum closing pressure; existing suspension valve can be used</td>
</tr>
<tr>
<td>J. PPV OUT fitting</td>
<td>Run tee; ¼ inch NPT male, ½ inch NTA, ¾ inch NTA</td>
</tr>
<tr>
<td>K. Emergency supply IN fitting</td>
<td>¼ inch NPT male to ½ inch NTA</td>
</tr>
</tbody>
</table>

1 May be provided with Height Control Valve (HCV) or Dock Stabilizing Technology™ (DST®) kit.

Figure 40: Typical TIREMAX® PRO plumbing schematic - two axles with ¾ inch and ¼ inch lines.
NOTE: To maintain adequate airflow, all air lines coming into and going out of the controller assembly must be \(\frac{3}{8} \) inch. All junctions of two or more \(\frac{1}{4} \) inch lines must be supplied by \(\frac{3}{8} \) inch line.

IMPORTANT: DO NOT use 90° fitting at output. This will restrict air flow.

Figure 41: Typical TIREMAAX® PRO plumbing schematic - single axle with \(\frac{3}{8} \) and \(\frac{1}{4} \) inch lines.
Item Description

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Provided with TIREMAAX<sup>®</sup></th>
<th>Supplied by installer</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Air line 1/4 inch OD nylon air brake tubing</td>
<td>1/4 inch OD nylon air brake tubing</td>
<td></td>
</tr>
<tr>
<td>B. Axle connector 90 degree elbow, 1/8 inch NPT male to 1/4 inch NTA (Nylon Tubing Adapter)</td>
<td>90 degree elbow, 1/8 inch NPT male to 1/4 inch NTA (Nylon Tubing Adapter)</td>
<td></td>
</tr>
<tr>
<td>C. Axle hose fitting 1/8 inch NPT female</td>
<td>1/8 inch NPT female</td>
<td></td>
</tr>
<tr>
<td>D. Axle vent fitting High flow axle vent (includes check valve)</td>
<td>High flow axle vent (includes check valve)</td>
<td></td>
</tr>
<tr>
<td>E. Air line 3/8 inch OD nylon air brake tubing</td>
<td>3/8 inch OD nylon air brake tubing</td>
<td></td>
</tr>
<tr>
<td>F. Controller IN fitting 1/4 inch NPT male to 3/8 inch NTA</td>
<td>1/4 inch NPT male to 3/8 inch NTA</td>
<td></td>
</tr>
<tr>
<td>G. Controller OUT fitting 1/4 inch NPT male to 3/8 inch NTA (gauge is optional)</td>
<td>1/4 inch NPT male to 3/8 inch NTA (gauge is optional)</td>
<td></td>
</tr>
<tr>
<td>H. Junction manifold 1/8 inch NTA inlet, 1/4 inch NTA outlets</td>
<td>1/8 inch NTA inlet, 1/4 inch NTA outlets</td>
<td></td>
</tr>
<tr>
<td>I. Pressure protection valve (PPV) 1. Required; 70 PSI minimum closing pressure; existing suspension valve can be used</td>
<td>Required; 70 PSI minimum closing pressure; existing suspension valve can be used</td>
<td></td>
</tr>
<tr>
<td>J. PPV OUT fitting Run tee; 1/4 inch NPT male, 3/8 inch NTA, 3/8 inch NTA</td>
<td>Run tee; 1/4 inch NPT male, 3/8 inch NTA, 3/8 inch NTA</td>
<td></td>
</tr>
<tr>
<td>K. Emergency supply IN fitting 1/4 inch NPT male to 3/8 inch NTA</td>
<td>1/4 inch NPT male to 3/8 inch NTA</td>
<td></td>
</tr>
</tbody>
</table>

1. These parts are available from Hendrickson. Refer to LITERATURE on page 6 to get part numbers.
2. May be provided with Height Control Valve (HCV) or Dock Stabilizing Technology™ (DST™) kit.

NOTE: To maintain adequate airflow, all air lines coming into and going out of the controller assembly must be 3/8 inch. All junctions of two or more 1/4 inch lines must be supplied by 3/8 inch line.

IMPORTANT: Do not use 90° fitting at output. This will restrict airflow.

Figure 42: Typical TIREMAAX[®] PRO plumbing schematic - two axles with 3/8 and 1/4 inch lines and junction manifold.
ELECTRICAL COMPONENT INSTALLATION

Once the controller is located and mounted to the trailer or slider, the electrical wiring can be completed. Multiple wiring options are available during the TIREMAAX® system configuration. These options are addressed in the following installation procedures for electrical components.

Electrical components include:
- Wire Harnesses
- Controller connectors
- Trailer-mounted indicator lamp (may not be included with TIREMAAX kit)

WARNING: Improper wiring or operation of TIREMAAX systems can lead to situations where the driver is not aware of damage to tire inflation system and/or wheel-end components.

WIRE HARNESS OPTIONS AND DETAILS

This section includes basic instructions for routing and installation of optional wire harnesses available from Hendrickson. Detailed information and criteria are also provided:
- Figure 43 shows a typical wiring schematic for the TIREMAAX systems.
- Figure 44 shows various connections based on the options selected for the installation.

NOTE: LED shown, incandescent can be grounded at lamp.

Figure 43: Typical wiring schematic for indicator lamp

Figure 44: Wire harness and indicator lamp options
STANDARD WIRE HARNESS INSTALLATION
Refer to Figure 43 schematic before continuing.

1. Connect the blue wire (terminal C) to vehicle uninterrupted power.

2. Route indicator lamp power wire (16 AWG minimum) and connect to the red wire on standard harness.

 NOTICE: Termination of all wires for the standard harness is the responsibility of the installer.

 NOTE: For indicator lamp mounting instructions, refer to TRAILER-MOUNTED INDICATOR LAMP INSTALLATION on page 36.

3. Connect other end of indicator lamp power wire and ground connection according to Figure 43.

4. Plug male harness connector into female connector of controller assembly.

5. Secure and restrain all wires as needed.

ABS JUNCTION WIRE HARNESS INSTALLATION
Refer to information provided in Figure 44 before continuing.

1. Using Figure 44 on page 34: Unplug 5-pin Delphi ABS power connector.

2. Plug 5-pin male Delphi connector of Hendrickson TIREMAAX® ABS Junction Wire Harness into the mating connector coming from the J560 interface.

3. Plug other end of harness into ABS female connector to complete the ABS circuit.

4. Connect 3-pin Delphi Weather Pack male connector into to the controller assembly as shown in Figure 44 on page 34.

5. Weatherproof all terminals and connectors as needed. Corrosion prevention compound must be used on all connectors. Refer to TMC RP 113, 114, 120 and 154 for recommended wiring practices.

6. Secure harness and wires as needed. Refer to ADDING RESTRAINT TO WIRING.

7. Proceed to TRAILER-MOUNTED INDICATOR LAMP INSTALLATION on page 36.

ADDING RESTRAINT TO WIRING
This procedure provides recommendations for securing and restraining the TIREMAAX® Premium 15 ft. power harness. If desired, a 3 ft. version of this cable is also available. Contact Hendrickson Aftermarket or OE Sales at 866-RIDEAIR (743-3247) for more information.

IMPORTANT: The cable bend radius should not be less than 1 inch.

DO NOT make bends in the cable near the connectors, Figure 45. This places stress on the connectors and may result in loss of connection and/or harness failure.

DO NOT place the harness and connectors in tension. Make sure when the slider is positioned at the most extreme positions the harness is not pulled.

DO NOT allow the cable to rub against a sharp edge of a hole or straight edge of a structural member. Use grommets and/or loom to protect the cable from sharp edges.

To restrain the harness:
1. Route harness under trailer as required.

2. Secure harness every 12 to 18 inches using nylon ties or other wire management hardware such as conduit or wire trays.

3. Support harness near connectors, as shown in Figure 45, so the weight of the cable is not supported by the connectors. Make sure connections are secure and not able move around during vehicle operation.

4. Bundle excess cable as shown in Figure 45.

TRAILER-MOUNTED INDICATOR LAMP INSTALLATION

Unless configured with lamp option, a trailer-mounted indicator lamp (incandescent or LED) is **NOT provided** with TIREMAAX® systems. Refer to Figure 44 on page 34 for indicator lamp and wiring options and details. Reference Refer to TMC RP 161 and 704.

Mount indicator lamp to trailer as follows:

1. **Determine** best location on the front corner or side of the trailer within view of the driver side view mirror.

 NOTE: On truck applications with large wind fairings, locating the indicator lamp near the left rear wheels (near the ABS warning lamp) may be preferable.

2. **Mount** indicator lamp at determined location (fasteners not provided). Recommended assembly torque is 17.5±2.5 in. lbs. (2.0±2 Nm) with a #10 machine screw.

3. **Connect** indicator lamp wires according to information provided in Figure 44 on page 34 and wire harness installation instructions on page 35.

SYSTEM INTEGRITY CHECK

After the installation is complete, but before the trailer is put into service, all air system connections must be tested. To accomplish this:

A. Complete the procedure **CHECKING FOR AIR LEAKS** on page 45.

B. Perform the **INDICATOR LAMP TEST** on page 47.

For PRO - The test procedure for validating proper TIREMAAX PRO controller function during the application of the trailer parking brakes should be as follows:

1. **Set** the trailer parking brakes by removing the emergency/supply gladhand or simulating this event by exhausting the pilot pressure at the PRO controller.

 Upon setting the parking brakes, a brief audible exhaust will be present at the controller. The maximum allowable time limit for the audible exhaust to be present is 10 seconds.

2. Once the audible exhaust has dissipated, a small airflow can continue to be detected at the exhaust port of the controller. **Use** leak detection solution and **observe** bubble formation.

 The maximum allowable time limit for bubble formation to be present is 5 minutes. If the system conforms to the allowable limits for audible exhaust and leak detection criteria above, the controller is considered to be within allowable factory specifications.

SYSTEM SETUP

The TIREMAAX® controller is pre-programmed from the factory, therefore no additional setup is required. To program a pressure other than the factory setting, follow the appropriate procedure:

For CP - **ADJUSTING CP INFLATION PRESSURE** on page 50

For PRO - **ADJUSTING PRO COLD INFLATION PRESSURE** on page 52
DECAL LOCATION

Various decals, Table 5 are provided with TIREMAAX® systems. These decals include important information relative to TIREMAAX operation and function. They must not be removed after installation. If included with the literature packet and not already installed on the trailer, place decals using the below figures and table.
INSTALLATION, SERVICE AND TROUBLESHOOTING PROCEDURES

TROUBLESHOOTING
Troubleshooting aids include:
• TROUBLESHOOTING MATRIX on page 39
• LIST OF EFFECTS WITH DESCRIPTIONS on page 40
• PROBABLE CAUSES WITH RECOMMENDED FIX on page 41

IMPORTANT: In the event of a severe leak, TIREMAAX® is designed to isolate tires. Check valves (Figure 5 and Figure 6 on page 12) will close and not allow air to completely exhaust from tires. This allows the driver to cautiously transport trailer to the nearest service center.

NOTICE: Air additives or antifreeze containing alcohol will degrade the performance rubber components (TMC RP 730).

TROUBLESHOOTING PROCEDURE

⚠️ CAUTION: Follow recommended safety practices at all times while troubleshooting.

1. Should a problem occur:
 A. Conduct a general inspection for obvious signs of damage and leaking at all TIREMAAX components. If not found, proceed to B. If found and the fix is not obvious, proceed to Step 2.
 B. Check tires and components for leaks using a soapy water solution and check each tire for a low pressure condition. Refer to IN THE EVENT OF A LEAK on page 45. Proceed to Step 2 if needed.

2. From TROUBLESHOOTING MATRIX on page 39, select the effect (letter) that best matches the symptoms associated with problem.
 NOTE: If needed, refer to LIST OF EFFECTS WITH DESCRIPTIONS on page 40.

3. Following down the lettered effect column from Step 2, select a numbered probable cause that most likely applies according to problem’s symptoms.

4. Refer to PROBABLE CAUSES WITH RECOMMENDED FIX on page 41.
 If, while investigating each probable cause, it is determined that:
 A. The probable cause does not apply, investigate the next most likely or simplest probable cause.
 B. The probable cause is found, complete the recommended fix, test and, if no other effects, restore system to normal operation.
 C. None of the probable causes for the selected effect prove valid, return to Step 2 and investigate the next likely effect with its probable cause(s).

5. Repeat process until the problem is resolved. If help is required, refer to CONTACT HENDRICKSON on page 6.
TROUBLESHOOTING MATRIX

This matrix includes a list of effects (lettered columns) and probable causes (numbered rows) to problems that may arise during the life of TIREMAAX® PRO and CP TIS. Start by evaluating the list of effects to determine those which may apply to your symptoms. Then match the checked (✓) probable cause which also applies.

For details on Effects (letters), refer to page 40; for numbered Probable Causes, refer to page 41.

If the problem is not found within this matrix, CONTACT HENDRICKSON for assistance.

<table>
<thead>
<tr>
<th>Probable Causes</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>System is functioning normally</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Slow leak</td>
<td>2</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Medium leak</td>
<td>3</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Severe leak</td>
<td>4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Leak at hubcap assembly</td>
<td>5</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Axle hose leak</td>
<td>6</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Tire hose leak</td>
<td>7</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Tire or rim leak</td>
<td>8</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Manifold leak (if included)</td>
<td>9</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Axle supply line/fitting leak</td>
<td>10</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Controller component leak</td>
<td>11</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Inflation/Deflation PSI set too close</td>
<td>12</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Controller malfunction</td>
<td>13</td>
<td>✓</td>
</tr>
<tr>
<td>Debris (blockage) in air system</td>
<td>14</td>
<td>✓</td>
</tr>
<tr>
<td>Pinched line</td>
<td>15</td>
<td>✓</td>
</tr>
<tr>
<td>Ice in system</td>
<td>16</td>
<td>✓</td>
</tr>
<tr>
<td>PPV not functioning</td>
<td>17</td>
<td>✓</td>
</tr>
<tr>
<td>Tire hose not properly clocked</td>
<td>18</td>
<td>✓</td>
</tr>
<tr>
<td>Hubcap wheel valve problem</td>
<td>19</td>
<td>✓</td>
</tr>
<tr>
<td>Problem in hubcap assembly</td>
<td>20</td>
<td>✓</td>
</tr>
<tr>
<td>Controller improperly mounted</td>
<td>21</td>
<td>✓</td>
</tr>
<tr>
<td>Cover not properly closed</td>
<td>22</td>
<td>✓</td>
</tr>
<tr>
<td>Insufficient air tank pressure</td>
<td>23</td>
<td>✓</td>
</tr>
<tr>
<td>Problem at emergency port</td>
<td>24</td>
<td>✓</td>
</tr>
<tr>
<td>Low tire pressure</td>
<td>25</td>
<td>✓</td>
</tr>
<tr>
<td>Test port vent in wrong position</td>
<td>26</td>
<td>✓</td>
</tr>
<tr>
<td>Problem not with TIREMAAX</td>
<td>27</td>
<td>✓</td>
</tr>
<tr>
<td>No power to controller</td>
<td>28</td>
<td>✓</td>
</tr>
<tr>
<td>Failed connection or cable</td>
<td>29</td>
<td>✓</td>
</tr>
<tr>
<td>Bad bulb or LED indicator</td>
<td>30</td>
<td>✓</td>
</tr>
<tr>
<td>Electrical short</td>
<td>31</td>
<td>✓</td>
</tr>
<tr>
<td>Bad ground</td>
<td>32</td>
<td>✓</td>
</tr>
<tr>
<td>Loose wire or connection</td>
<td>33</td>
<td>✓</td>
</tr>
</tbody>
</table>

Not Applicable
LIST OF EFFECTS WITH DESCRIPTIONS

Referenced from the TROUBLESHOOTING MATRIX, use the below table to obtain a more detailed description of the effects. Each is identified by the corresponding name and letter (column).

<table>
<thead>
<tr>
<th>EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>J</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>O</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>Q</td>
</tr>
<tr>
<td>R</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>The indicator lamp flickers and does not stay lit for any length of time while inflating.</td>
</tr>
<tr>
<td>During normal operation, the indicator lamp may come on while tires are being inflated. If the indicator lamp is on for more than 10 min., it is likely indicating the existence of a leak. NOTE: After startup, the lamp will remain on while inflating low tires.</td>
</tr>
<tr>
<td>The lamp comes on and stays on after power is applied to trailer.</td>
</tr>
<tr>
<td>There may be no noticeable change in lamp status after power is applied to trailer if system integrity is good and tires are consistently at the desired Inflation Pressure. If in doubt, perform INDICATOR LAMP TEST on page 47.</td>
</tr>
<tr>
<td>With the CP system, wheel valves only allow air to flow in one direction for inflation and tires are independent. For the PRO system, wheel valves allow air flow in both directions and tire pressures are equalized while trailer parking brakes are released. As a safety precaution, wheel valves automatically close when necessary.</td>
</tr>
<tr>
<td>All other wheel-ends appear to have normal inflation and tire pressure.</td>
</tr>
<tr>
<td>Tires are low at both wheel-ends of a common axle.</td>
</tr>
<tr>
<td>Tires are low and no indicating of inflation from TIREMAAX®. Refer to effect E.</td>
</tr>
<tr>
<td>Only one tire is affected for the wheel-end of a dual tire wheel-end.</td>
</tr>
<tr>
<td>Air can be heard and/or felt leaking from inside the controller enclosure. If air continues to exhaust or leak, investigate probable causes. For a PRO system, refer to effect K.</td>
</tr>
<tr>
<td>TIREMAAX PRO only (Figure 6 on page 12 and Figure 55 on page 51): After the trailer parking brakes are set, 1-2 seconds to close is normal. Abnormal conditions would include the exhaust valve not closing and hubcap wheel valves not closing or closing slowly.</td>
</tr>
<tr>
<td>Noticeable damage exists to tire hose(s), especially on the same wheel-end or side.</td>
</tr>
<tr>
<td>Escaping air pressure can be felt and/or heard from the axle vent tube Figure 17 on page 19.</td>
</tr>
<tr>
<td>The controller cover is not present or is damaged in some way.</td>
</tr>
<tr>
<td>No air (pressure) is available at the deliver port on the controller</td>
</tr>
<tr>
<td>It is normal for the Inflation Pressure to be low while there is no air flow through the controller. Otherwise, a problem may exist.</td>
</tr>
<tr>
<td>The cover closes with difficulty or not at all.</td>
</tr>
<tr>
<td>A short spurt of air is normal as air bleeds from the gladhand connectors at the front of the trailer, when the gladhand is removed. If air continues to bleed from the gladhand, determine if the controller is the source by disconnecting the line at the bottom of the controller. This is the line that connects the emergency air supply to the port at the controller. If air comes out of the emergency air supply port, then replace the controller. If no air comes out of the port, then the issue must be in the parking brake relay or a plumbing error.</td>
</tr>
</tbody>
</table>
Probable Causes with Recommended Fix

As with the list of effects, one or more probable causes may apply. For each effect selected, choose the most likely probable cause or ones that are easy to investigate first. Footnotes are located at end of table.

<table>
<thead>
<tr>
<th>Probable Causes</th>
<th>Description</th>
<th>Recommended Fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 System is functioning normally¹</td>
<td>Refer to Figure 6 on page 12</td>
<td>No action may be required.</td>
</tr>
<tr>
<td></td>
<td>During normal operation, the indicator lamp remains off if tire pressures are at or near the desired Inflation Pressure.</td>
<td>If the integrity of the indicator lamp is in question, perform the INDICATOR LAMP TEST on page 47. Also refer to the Electrical 5 section of the matrix and this table.</td>
</tr>
<tr>
<td></td>
<td>Should tires lose air during trailer idle time, the system will restore pressure at startup and the indicator lamp will remain ON until target is reached.</td>
<td>If necessary, see effect B Indicator lamp on for more than 10 min or review other causes listed in the TROUBLESHOOTING MATRIX.</td>
</tr>
<tr>
<td></td>
<td>TIREMAAX® PRO only: Excess pressure is exhausted below the PRM when tire pressures exceed the target setting or settings are improperly adjusted.</td>
<td>If the air flow is continuous, readjust controller settings. Refer to SETTING TIREMAAX® PRO INFLATION PRESSURE on page 51 or T52001.</td>
</tr>
</tbody>
</table>
| 2 Slow leak | A slow leak in a tire or elsewhere may cause the system to frequently or continuously deliver air to inflate tires. The amount of air flow may not be enough to turn on the indicator lamp, but the system will be able to maintain Inflation Pressure as long as tank pressure is maintained. | I. Check tire for leaks from puncture, rim leaks, etc.
II. Perform CHECKING FOR AIR LEAKS on page 45 for tire hose and fittings. |
| 3 Medium leak | Light on more than 10 minutes and/or intermittent. The leak should be audible. This type of leak flows enough air out the system to cause the indicator to come on, but the system can still maintain tire pressures. | I. Check for system damage and obvious leaks in tires or plumbing.
II. Refer to effect M Air exhausting from axle vent.
III. If needed, perform SYSTEM INTEGRITY CHECK on page 36.
IV. Repair as needed. |
| 4 Severe leak | Light on continuously, damaged tire or other condition that allows maximum air flow. In this case, the source of the leak should be audible and obvious. | Refer to the applicable plumbing schematic to help locate and repair leak.²
I. For CP controllers, close the controller supply valve. For PRO controllers, set the trailer parking brakes.
II. Temporarily disconnect the airline going to one end of the axle.
⚠️ CAUTION: When disconnecting a delivery airline of a CP controller, there may be residual pressure in the airlines. Plug the loose airline.
III. For CP controllers, open the controller supply valve. For PRO controllers charge the emergency/supply line.
⚠️ CAUTION: Make sure the wheels are chocked when releasing trailer parking brakes.
IV. Check for air escaping axle vent. If:
a. Air continues escaping from the axle vent, repeat Step I. Reconnect the airline. Disconnect and plug the airline on the opposite end of the axle. Repeat Step III.
b. Air stops escaping from the axle vent, it indicates the leak exists on the axle hose and or the hubcap of the disconnected airline.
V. Inspect the suspect hubcap and axle hose. Replace if found to be defective.³,⁴ |
| 5 Leak at hubcap assembly | Rotary union or other assembled components in hubcap assembly may have worn or failed, resulting in a leak or blockage. Leaking air pressure in the wheel-end and axle is vented at the axle vent. | |
| 6 Axle hose leak | Leaking air pressure in the axle is vented at the axle vent. Most likely the leak is at an end fitting. If not follow procedure to right to isolate the leak. | |

¹ As with the list of effects, one or more probable causes may apply. For each effect selected, choose the most likely probable cause or ones that are easy to investigate first. Footnotes are located at end of table.
² Leakage ²
³ For CP controllers, close the controller supply valve. For PRO controllers, set the trailer parking brakes.
⁴ Temporarily disconnect the airline going to one end of the axle.
⁵ Inspect the suspect hubcap and axle hose. Replace if found to be defective.³,⁴
<table>
<thead>
<tr>
<th>PROBABLE CAUSES</th>
<th>DESCRIPTION</th>
<th>RECOMMENDED FIX</th>
</tr>
</thead>
</table>
| 7 Tire hose leak | A leak in the tire hose can be the result of:
1. Over stretching
2. Hose catching on object while driving
3. Improper installation
4. Cut O-ring or gasket
Also refer to probable cause 18. | I. Perform CHECKING FOR AIR LEAKS on page 45 for tire hose(s) and fittings.
II. Replace the tire hose if:
a. Leaking or shows any evidence of damage.
b. O-ring is torn, distorted or is otherwise damaged.
c. Threads are damaged, in which case the hubcap may also need to be replaced. |
| 8 Tire or rim leak | If the tire or rim leak is large enough, the wheel valve will close and isolate the tire at the hubcap. | Refer to IN THE EVENT OF A LEAK on page 45. |
| 9 Manifold leak (if included) | If your system has a manifold, it is a potential source of leaks. For CP system, refer to Figure 39 on page 30. For PRO system, refer to Figure 42 on page 33. | I. Perform CHECKING FOR AIR LEAKS on page 45 for manifold hoses and fittings.
II. Repair or replace as needed. |
| 10 Axle supply line/fitting leak | These are the hoses and fittings that supply air to both ends of the axle. For CP, refer to Figure 37 through Figure 39. For PRO, refer to Figure 40 through Figure 42. | I. Perform CHECKING FOR AIR LEAKS on page 45 for supply lines and fittings.
II. Repair or replace as needed. |
| 11 Controller component leak | If air is exhausting from the controller enclosure, first check Effect K. If air is leaking from the test port, check probable cause 26.
Controller leaks can be caused by operator error, damage, corrosion, worn or malfunctioning components. | I. Check controller enclosure and components for possible damage and leaking.
II. If CP or previous version of PRO controller, check the petcock (if included). It should be closed tightly.
III. If current PRO controller, check the test port vent for proper installation, Figure 49 on page 47.
IV. Unless the leaky component is an external OE supplied fitting, replace controller. |
| 12 Inflation/Deflation PSI set too close | TIREMAAX® PRO only: If Inflation Pressure and Deflation Pressure settings are too close or reversed, supply air will bleed out the PRM exhaust port (Figure 6 on page 12). | Perform SETTING TIREMAAX® PRO INFLATION PRESSURE on page 51. |
| | | |
| Equipment | | |
| 13 Controller malfunction | Once closed and sealed, the internal components are protected. However, environmental changes and external influences from air supply can effect component operation.
For PRO, excess pressure is exhausted from the PRM exhaust port within the controller (Figure 55 on page 51); this is normal. | I. Check controller for damage.
II. Perform CHECKING FOR AIR LEAKS on page 45 for components inside the controller and external fittings.
III. Repair or replace as needed.
IV. Refer to probable cause 26. |
| 14 Debris (blockage) in air system | The supply valve (Figure 52 on page 48) includes a screen to filter larger debris from entering and contaminating the air within the system. However, should passable bits of debris collect at any point within components of the system, a blockage can occur. Regular maintenance of the compressor and air tank can help to avoid this problem. | I. Check and clean the screen filter at the supply valve. Replace valve as needed.
II. If the effect of a possible blockage can be narrowed with the matrix, disconnect fittings and hoses to clear the suspected blockage.
III. If attempts to clear the suspected blockage fail, replace components as needed. |
| 15 Pinched line | Air line is kinked or pinched between objects. | Make corrections as needed. |
| 16 Ice in system | Moisture and low temperatures can combine to form ice particles in the system plumbing. This can lead to blockages or diminished air flow and corrosion. | I. Park trailer in warm environment.
II. Bleed moisture from air tank.
III. Check drier at compressor (TMC RP 637).
IV. Replace components that show evidence of corrosion.
V. Perform CHECKING FOR AIR LEAKS on page 45 for components inside the controller and external fittings. |
<table>
<thead>
<tr>
<th>PROBABLE CAUSES</th>
<th>DESCRIPTION</th>
<th>RECOMMENDED FIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 PPV not functioning</td>
<td>The Hendrickson PPV has an opening pressure of 75±5 psi and a closing pressure of 70±5 psi. For various reasons, it may fail to open or close.</td>
<td>If the pressure in the tank is known to be above 80 psi and the valve remains closed, replace the PPV.</td>
</tr>
<tr>
<td>18 Tire hose not properly clocked</td>
<td>Improperly installed (clocked) tire hoses can lead to stretching or expose tire hoses to objects that can damage the tire hose.</td>
<td>Refer to and review TIRE HOSE INSTALLATION on page 24 to determine if properly installed and clocked. Make corrections as needed.</td>
</tr>
</tbody>
</table>
| 19 Hubcap wheel valve problem | **TIREMAAX PRO only:** When the trailer parking brakes are set, the wheel valves should close within 2 seconds. Debris or contaminants in the air lines can cause wheel valves (Figure 6) to close more slowly and bleed air from one or more wheels out through the controller exhaust ports. | I. Inspect delivery airlines for kinks. Confirm that plumbing meets requirements specified in section CONTROL LINE INSTALLATION on page 27.
II. With brakes set, isolate the affected hubcap by disconnecting tire hoses at the hubcaps, one at a time, until air stops exhausting from the controller exhaust vents.
III. Replace the hubcap if:
 a. Air stops exhausting from the controller exhaust vents when the tire hose is disconnected.
 b. Tire pressure is significantly below the set Inflation Pressure.
 NOTE: More than one hubcap may need to be replaced before the problem is resolved.
IV. If all hubcaps exhibit the issue, inspect the axle hoses by removing the 90 degree axle connector fitting (see item B on page 31) and insert a .078" diameter pin into the axle hose bulkhead fitting. The pin should pass through the orifice in the fitting. If it does not, replace the axle hose. |
| 20 Problem in hubcap assembly 3, 4 | The hubcap contains moving parts, valves and other components that have the potential for mechanical issues caused by debris and/or contaminants. | If contamination is suspected, See probable cause 14. Replace entire hubcap assembly as needed. |
| 21 Controller improperly mounted | The controller should be placed in a location to minimize exposure to the environment and flying road debris. Hendrickson sliders include pre-drilled holes to mount the controller on the front crossmember. | Refer to CONTROLLER INSTALLATION on page 25 to verify proper controller installation and mounting. |
| 22 Cover not properly closed | Not properly closing and securing the controller cover directly exposes internal components to the environment and flying road debris. | I. Refer to probable cause 26.
II. Close and secure the controller cover with a wire tie or fastener. |
| 23 Insufficient air tank pressure| 1. Air tank pressure must be greater than 75±5 psi to open Hendrickson's PPV. See probable cause 17.
2. Tank pressure is below the Inflation Pressure setting listed on front of the controller. Refer to DECAL LOCATION on page 37.
3. Compressor maximum output is below target. | I. Check truck air outlet and correct as needed.
II. Inspect hoses and fittings from gladhand coupling to air tank.
III. Inspect air tank for damage and leaks. |
| 24 Problem at emergency port | **TIREMAAX® PRO only** (Figure 6 and Figure 42): While trailer parking brakes are set, no pressure should be present at controller’s emergency air supply port. Zero pressure is required to fully close off the delivery port. See effect K for more details. Alternately, while parking brakes are released, air pressure should be present at the emergency air supply port (Figure 6) to open the delivery port. | Check to ensure:
I. Emergency air line is connected to the emergency air supply port.
II. When trailer parking brakes are released, not set, pressure is present in the line.
III. When trailer parking brakes are set, pressure is not present in the line.
IV. The emergency air lines and fittings have no blockages, breaks, leaks or kinks. |
PROBABLE CAUSES

<table>
<thead>
<tr>
<th>Probable Cause</th>
<th>Description</th>
<th>Recommended Fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Low tire pressure</td>
<td>One or more tires appear to be low. This could be a normal condition if the trailer has been idle for a period of time and the controller is off. Decreased elevation or drop in temperature can also cause tire pressures to drop.</td>
<td>If all tires are low, the problem may exist with the controller and associated plumbing. If one or more tires are low, look for other probable causes. Refer to IN THE EVENT OF A LEAK on page 45.</td>
</tr>
<tr>
<td>26 Test port vent in wrong position</td>
<td>The test port vent is included with current TIREMAAX PRO controllers. It can be threaded to the test port in the TEST or STORE position, see INDICATOR LAMP TEST on page 47. If left in the TEST position: 1. Air may leak out the test port. 2. The controller cover will not properly close.</td>
<td>Unthread test port vent from the test port, flip and reinstall in the STORE position. Ensure cover completely closes and latches. If the cover is damaged, replace it.</td>
</tr>
<tr>
<td>27 Problem not with TIREMAAX</td>
<td>TIREMAAX depends on supply air integrity, power for the indicator lamp and, for the PRO controller, emergency air pressure.</td>
<td>Where applicable, check each input to the controller to ensure no problems exist. Check other effects and probable causes related to these external inputs.</td>
</tr>
</tbody>
</table>
| **28** No power to controller | Power is not required for the TIREMAAX system to operate, but it is required to operate the indicator lamp and inform the driver of malfunctions and status. | I. Ensure truck uninterrupted power is available at the J560 connector.
II. Check wiring to controller according to Figure 43 on page 34. |
| **29** Failed connection or cable | Loss of connection anywhere in the system can prevent the indicator lamp from illuminating. If not properly secure, connected or weather proofed, connections can fail. | I. Check wiring according to Figure 43 on page 34.
II. Ensure all connectors are properly and securely connected. Refer to ELECTRICAL COMPONENT INSTALLATION on page 34. |
| **30** Bad bulb or LED indicator | Like power, the TIREMAAX system is fully functional with a bad indicator lamp. However, driver feedback for malfunctions and status is not provided. | Perform INDICATOR LAMP TEST on page 47. |
| **31** Electrical short | Power side of indicator lamp is shorted or flow switch is stuck on. Refer to Figure 43 and Figure 44 on page 34. | I. Disconnect connector at controller. If lamp stays on, power wire or lamp cable is shorted. Fix or replace as needed.
II. Close supply valve. If lamp stays on, flow switch is stuck in ON position or short is in controller. Replace controller. |
| **32** Bad ground | Corrosive surface bonding and frayed wires can result in poor electrical connection. This would effect indicator lamp function during inflation. | I. Refer to Figure 43 on page 34 to trace and check all electrical wiring and connections.
II. Repair as needed. In some cases, sealing connections against weather conditions may be necessary. |
| **33** Loose wire or connection | Loose wires can lead to no or intermittent illumination of the indicator lamp during inflation. | I. Refer to Figure 43 and Figure 44 on page 34 to trace and check all electrical connections.
II. Refer to ADDING RESTRAINT TO WIRING on page 35 to ensure all wires and wire harnesses are properly restrained. |

1 If there are no tires damaged and no leaks present, let the TIS continue to operate. Low temperature, poor air supplies and low tire pressures will increase the period of time required to inflate and maintain tire pressure. If the indicator lamp remains on after an additional 10 minutes, service is required. The use of air additives and antifreeze containing alcohol will cause deterioration of rubber components and must be avoided.
2 The system identifies leaks and reports them by illuminating the trailer-mounted indicator lamp. The operator is informed whenever a tire is low enough to require service or there is a leak in the system. Wheel valves isolate the leaking or damaged wheel from the system. Probable cause 2, 3 and 4 help identify the severity of the leak in general and apply to all other causes of leaks. Other causes, with their associated effect, help to identify the location of the leak referenced in causes 2, 3 and 4.
3 Before removing a hubcap for any procedure, refer to manufacturer’s warranty requirements. Disturbing spindle nut, wheel bearings and hub assembly can violate the wheel-end warranty. Also, replace the gasket with new and replenish any lost lubricant during reassembly according to manufacturer’s requirements.
4 Any attempts to disassemble hubcap assembly or controller and its components will void the TIREMAAX warranty.
5 When working around electricity and with electrical components, always observe proper safety precautions.
SERVICE PROCEDURES
This section includes service information and requirements relative to TIREMAAX® PRO and CP systems.

TOOLS REQUIRED
For a list of tools required to work TIREMAAX systems, refer to L878 TIREMAAX Parts List.

<table>
<thead>
<tr>
<th>TOOL</th>
<th>WHERE USED</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP Target Gauge VS-32344</td>
<td>SETTING CP INFLATION PRESSURE on page 49</td>
</tr>
<tr>
<td>TIREMAAX PRO Target Gauge VS-32331</td>
<td>SETTING TIREMAAX® PRO INFLATION PRESSURE on page 51</td>
</tr>
<tr>
<td>Tire pressure gauge</td>
<td>Checking tire pressures</td>
</tr>
<tr>
<td>1/8 inch hex key</td>
<td>Adjusting controller pressure</td>
</tr>
<tr>
<td>7/16 inch wrench</td>
<td>Tighten tire hose / valve stem connection</td>
</tr>
</tbody>
</table>

Table 6: List of required tools

INSPECTIONS AND INSPECTION INTERVALS
Hendrickson recommends:

- Tires be inspected for wear and damage at regular intervals.
- Check tire pressure at regular intervals using the method described in MANUALLY CHECK TIRE PRESSURE. Reference tire manufacturers’ guidelines for acceptable inspection intervals.
- At regular intervals, check TIREMAAX components for air leaks and indicator lamp operation.

In addition to the periodic intervals listed below:

- All inspections should be completed any time a tire is removed from the trailer or if any tire is suspected to be at a low pressure condition.
- Always maintain current shop preventive maintenance and pre-trip inspection practices.
- Any preventive maintenance practices followed for general trailer air system inspections should also be applied to the TIREMAAX system components.

EVERY THREE MONTHS
To test system integrity, perform the following:

1. Check indicator lamp, see INDICATOR LAMP TEST on page 47.

2. Manually check all tires for a low pressure condition by removing the tire hoses at the hubcap using MANUALLY CHECK TIRE PRESSURE on page 48.

3. Inspect all tire hoses to ensure that they are secure.

EVERY 12 MONTHS
In addition to the above three month check, perform the following:

1. Inspect all system connections for leaks. Apply soapy water to all air fitting connections, including the axle vent. Bubbles in the soapy water will provide a visual indication of an air leak. All connections must be air tight.

2. Check:
 A. Regulator Inflation Pressure (PRO and CP)
 B. PRM relief pressure (PRO only).

IN THE EVENT OF A LEAK
Should a leak occur in the system:

- A small leak in one or more tires will result in continuous air flow in the lines.
 - If the flow rate is below the flow switch monitored rate (located in the controller), the light will remain off and not affect system performance.
 - If the flow rate is above the monitored rate of the indicator lamp flow switch, the light will remain on as long as the Inflation Pressure is below the Inflation Pressure setting.

PRO Only:

- If a system leak is large enough to cause the controller Inflation Pressure to fall below the shut-off threshold of the hubcap wheel valve:
 - The wheel valves will close.
 - With the wheel valves closed, tires are isolated from the controller, delivery air line plumbing and each other.

- If the leak is too large to maintain tire pressure, the system can be temporarily disabled until the system can be repaired. Refer to DISABLE TIREMAAX® TIS on page 48.

CHECKING FOR AIR LEAKS
If a leak is suspected and not obvious, perform this procedure to locate leaks on air hoses, fittings and components. Also perform this procedure as a system integrity check after installation.
WARNING: Chock all wheels before beginning this procedure. Refer to PREPARING TRAILER FOR SERVICE on page 7 for details.

NOTE: If the system includes a pressure gauge, the gauge will appear to register low pressure while tires are being inflated or if a leak exists in the system. A simple test for a leak (CP ONLY) would be to temporarily close the supply valve and observe to see if pressure holds steady. If pressure decreases, there may be a leak in the system.

NOTE: The TIREMAAX® system can be pressurized without applying electrical power (indicator lamp is disabled).

Pressurize and check the TIREMAAX system as follows:

1. Fill trailer air system to at least 90 psi. If conducting an integrity check after installation, the system must be filled to 5 psi above the desired Inflation Pressure.

2. **(PRO Only)** Chock wheels and release trailer parking brakes while checking for leaks.

!Supply valve open !Supply valve closed
Figure 48: Supply Valve Operation

3. Ensure TIREMAAX supply valve is in open position (Figure 48).

4. Inspect hoses and components for damage and listen for audible indications of a leak. Repair as required.

5. Apply soapy water to all air-fitting connections. Bubbles in the soapy water will provide a visual indication of an air leak.

NOTE: Simply spraying the connections to look for leaks is acceptable. Using a commercially available leak detector solution or soapy water to verify airtight connections is best and recommended.

6. At axle vent, listen for air flow through the vent tube and apply leak detection fluid to find any leaks internal to the axle and hubcaps.

NOTE: Temporarily removing and capping supply hose to road or curb side axle hose will further isolate a suspected leak.

7. Check tire hose connections at valve stems. Verify tire hose/valve stem connection did not loosen during the tire hose connection process.

8. Fix, if necessary, all connections to ensure they are air tight.

9. After fixes are complete, repeat procedure until no leaks are detected.

NOTE: If conducting a system integrity check to identify possible leaks, an additional benefit is all tires will be inflated to the Inflation Pressure (refer to TIRE INFLATION on page 13).
INDICATOR LAMP TEST
This procedure tests both the indicator lamp and flow switch in the controller.

NOTE: The indicator lamp may flash momentarily when the trailer parking brakes are released. If this occurs, the following steps are not required.

1. **Verify** 12 VDC power is available to trailer. Refer to Figure 43 and Figure 44 on page 34 for wiring diagrams.

2. **Enable** air flow through controller (*select* applicable method, A or B):

 - **A.** The current PRO controller includes a **test port vent** tool that threads into the test port (Figure 49) in the **STORE** position. To perform a lamp test:
 - i. **Open** controller.
 - ii. **Unthread** the test port vent from the test port. Vent should be in **STORE** position.
 - iii. **Reverse** the test port vent and reinstall in the **TEST** position. In this position, the inner pin allows air to pass out the port.

 - **B.** If included: **Open petcock** on controller (Figure 49) to generate air flow across internal flow switch.

 NOTE: A petcock is included on previous version of the PRO controller, if not present, use method A.

3. **Observe** indicator lamp:
 - **A.** If illuminated, both indicator lamp and controller flow switch are working properly.
 - **B.** If indicator lamp is **NOT illuminated**:
 - i. **Check** continuity at controller connector. If the flow switch is working, the circuit should be closed. If circuit is open, replace controller.
 - ii. **Apply** 12 VDC power directly to the lamp. If indicator lamp is **not on**, replace the indicator.
 - iii. If indicator lamp is still not on, **check** wiring.

4. **Test complete:**
 - **A.** If included: **Unthread** test port vent, **reinstall** in the **STORE** position and **close** the controller cover.
 - **B.** If included: **Completely close** petcock at controller.
MANUALLY CHECK TIRE PRESSURE

WARNING: To prevent injury, always wear eye protection when maintaining or servicing the vehicle.

NOTE: Check valves in the tire hoses help prevent tire pressure loss when a tire hose is removed. You may experience a slight burst of air when the hose is disconnected.

To manually check tire pressure (Figure 51):

- Turn vehicle off.
- Disconnect tire hose from hubcap.
- Use a conventional gauge to measure tire pressure at hose end.
- Inspect tire hose O-rings for nicks or cuts. Replace as needed.
- Reattach and firmly hand-tighten tire hose. Refer to TIRE HOSE INSTALLATION on page 24 for details.

NOTICE: Do not overtighten the tire hose at the tire valve stem or the internal tire hose seal may be damaged. Ensure tire hoses are not stretched or rubbing on the wheel.

NOTE: If a hose is removed, the system will:

- Isolate disconnected tire.
- Continuously maintain Inflation Pressure for all connected tires.

IMPORTANT: While tire hoses are removed at the hubcap, a check valve (spring type valve core - 2 to 3 psi), in the tire hose, prevents air leaking from tire.

DISABLE TIREMAAX® TIS

This procedure may be required in case of a system leak or failure.

1. Set trailer parking brakes.

2. Located on the TIREMAAX controller, turn the Supply valve to the closed position (Figure 52).

3. At each tire:
 A. Detach tire hose at the hubcap.
 B. Check tire for correct inflate pressure. Refer to MANUALLY CHECK TIRE PRESSURE.
 C. Completely remove tire hose(s) from tire and store.

IMPORTANT: Do not discard tire hoses. They will need to be reinstalled during service.

4. Seek service when possible.
SETTING CP INFLATION PRESSURE
The TIREMAAX® CP controller is pre-set at the factory, therefore no additional setup is required. To reset a pressure other than the factory setting, follow these instructions.

IMPORTANT: The system must be free of air leaks prior to performing these procedures. Refer to CHECKING FOR AIR LEAKS on page 45.

REQUIRED TOOLS AND RESOURCES
The following tools and resources are required to adjust TIREMAAX CP controller settings.
- Clean, dry shop air supply capable of generating at least 5 psi above desired cold Inflation Pressure.
- Tire pressure gauge.
- CP target gauge: A dial or digital pressure gauge capable of reading 5 psi above cold Inflation Pressure, may also be used.

NOTE: The TIREMAAX PRO target gauge (Figure 56 on page 51) can not be used in place of the CP target gauge. Fittings are not compatible.

CHECKING CP INFLATION PRESSURE
Follow this procedure to check Inflation Pressure at the delivery port (Figure 53) of a TIREMAAX CP controller.

1. **Chock** wheels or otherwise immobilize trailer.
2. Using clean, dry shop air supply, **pressurize** trailer air tank to at least 5 psi above desired Inflation Pressure.
3. **Close** controller supply valve (Figure 53).
4. **Remove** tire hose at a hubcap and **install** CP target gauge (Figure 54).
 - If CP target gauge is not available:
 A. **Open** petcock valve on the delivery line to relieve pressure in system.
 B. **Remove** delivery line from the controller.
 C. **Install** temporary pressure gauge at the delivery port.
5. **Close** petcock valve on the delivery line.
6. **Open** controller supply valve.
7. **Monitor** Inflation Pressure on the gauge:
 A. **Close** supply valve (Figure 53).
 B. **Observe** gauge: if pressure decreases, there may be a leak in the system plumbing, a low tire or a tire leak. **Locate and repair** before continuing. Refer to CHECKING FOR AIR LEAKS on page 45.
C. **Open** supply valve and allow tires to inflate to the current Inflation Pressure before continuing.

NOTE: Current Inflation Pressure at the delivery port should be 5-6 psi higher than desired cold Inflation Pressure due to valve “Crack Pressure”.

8. **If necessary**, continue to next procedure to **adjust** the Inflation Pressure to match the desired cold target Inflation Pressure.

9. **Reference** procedure Step 3 to Step 6 to remove target gauge and **restore** system to normal operation.

ADJUSTING CP INFLATION PRESSURE

Before making any adjustments:

A. **Perform** CHECKING CP INFLATION PRESSURE on page 49. The target gauge should remain installed from this procedure. If not, install per previous procedure.

B. **Disconnect** all tire hoses at hubcaps. This reduces adjustment response time for changes in regulated pressure and increases accuracy.

NOTE: Inflation Pressure is regulated by rotating the regulator knob either clockwise or counterclockwise (as viewed from the end of the knob). **Before the knob can be rotated**, it must be unlocked.

1. **Unlock** the regulator knob by pulling it away from the regulator body (Figure 53).

2. **From the results of the previous procedure:**

 A. **If Inflation Pressure is set too low**, increase Inflation Pressure by rotating the regulator knob **clockwise** (as viewed from the end of the knob).

 IMPORTANT: Always approach the Inflation Pressure setting from an increasing-pressure direction.

 B. **If Inflation Pressure is set too high,**

 i. **Decrease** it by rotating the regulator knob **counterclockwise** (as viewed from the end of the knob).

 ii. **Lower** the pressure setting to at **least 5 psi below the desired Inflation Pressure** setting.

 iii. **Turn** knob clockwise again to the desired cold Inflation Pressure setting.

3. **Close** controller supply valve (Figure 53).

4. **Open** petcock valve on the delivery line to vent the system.

5. **Remove** CP target gauge from hubcap port.

 If CP target gauge not used:

 A. **Remove** pressure gauge from the delivery port.

 B. **Reinstall** delivery line and close petcock valve.

6. **If decreasing** Inflation Pressure, **manually depress** the check valve core at the end of each tire hose to reduce tire pressure to **5 psi below target**.

7. **Reconnect** all tire hoses to the hubcaps. Firmly hand-tighten.

8. **Open** controller supply valve.

9. **When gauge pressure reaches target, MANUALLY CHECK TIRE PRESSURE** (using procedure on page 48) of at least two tires.

10. **If necessary, repeat** CHECKING CP INFLATION PRESSURE on page 49 and this procedure (in that order) until the pressure at the tire hoses is at the desired cold Inflation Pressure per specifications.

RESTORE CP SYSTEM TO NORMAL OPERATION

Once cold Inflation Pressure is set:

1. **Lock** regulator knob by pushing it in toward the regulator body (Figure 53). Ensure knob will not rotate.

2. **Close and latch** controller enclosure.

3. **Update** decal on controller cover (Figure 47 on page 37), if necessary.

4. **Disconnect** shop air supply from trailer air tank.
SETTING TIREMAAX® PRO INFLATION PRESSURE

The TIREMAAX PRO controller is pre-set at the factory, therefore additional setup is **normally not required**. If a change to the inflation or Deflation Pressure settings is required, follow these instructions.

NOTE: The following procedures assume the trailer is not connected to a truck and the system integrity is good.

IMPORTANT: The system must be free of air leaks prior to performing these procedures. Refer to **CHECKING FOR AIR LEAKS** on page 45.

WARNING: Emergency air supply must be available at the emergency air supply port on the controller to enable TIREMAAX PRO operation. Supplying air at the emergency gladhand will also release trailer brakes.

These procedures can also be found in Hendrickson literature number T52001 *Toolbox Tips: TIREMAAX PRO - Setting Target Pressures* and in videos available at www.Hendrickson-intl.com/Trailer.

REQUIRED TOOLS AND RESOURCES

The following tools and resources are required to adjust TIREMAAX PRO controller settings.

- Clean, dry shop air capable of supplying at least 15 psi above Inflation Pressure listed on controller decal.
- Tire pressure gauge.
- TIREMAAX PRO target gauge (Figure 56) or equivalent.
- 1/8 inch Allen wrench.

NOTE: The target gauge might not display an accurate Inflation Pressure while trailer parking brakes are released. To isolate the delivery lines from the air supply, set the trailer parking brakes before reading the gauge.

- 1/8 inch Allen wrench.
CHECKING PRO COLD INFLATION PRESSURE
Follow this procedure to check the PRO controller’s cold Inflation Pressure for TIREMAAX PRO systems.

IMPORTANT: The TIREMAAX PRO target gauge (Figure 56) is required for this procedure. The PRO regulator does not self exhaust which could result in false readings.

Available clean, dry shop air supply must be at least 15 psi above cold target (inflation) pressure for this test.

1. Set trailer parking brakes.
2. Chock wheels or otherwise immobilize trailer.
3. Locate controller on the trailer. Ensure supply valve is in closed position. Refer to Figure 52 on page 48.
4. Open controller cover, remove test port vent, if included, and connect target gauge (Figure 56) to the test port (Figure 55).

IMPORTANT: Ensure target gauge shop supply valve is closed and the pressure relief button is not pressed while installing or removing target gauge.

5. Charge tank by connecting clean, dry shop air supply to emergency air supply and target gauge. Once charged, disconnect from emergency brake gladhand (Figure 56).
6. Check PRO Inflation Pressure.
 A. Ensure target gauge shop supply valve is closed.
 B. Open controller supply valve on the controller.
 C. Press and release the pressure relief button.
 D. Read and record target gauge pressure.

 NOTE: Current Inflation Pressure should be at the specified cold target Inflation Pressure on the controller decal (Figure 47 on page 37).

7. Check PRO Deflation Pressure.
 A. Close the controller supply valve.
 B. Open the shop supply valve. You should hear air exiting the valve.
 C. Close the shop supply valve. Air should stop exiting after 45 to 60 seconds.
 D. Read and record the target gauge pressure. This is the current Deflation Pressure.

8. Compare measured Inflation Pressure and Deflation Pressure readings to desired settings.

 NOTE: Delivery Deflation Pressure should be 10 psi higher than the specified cold Inflation Pressure on the controller decal (Figure 47 on page 37).
 A. If not at specified cold Inflation Pressure settings, refer to TROUBLESHOOTING on page 38.
 B. If adjusting Inflation Pressure, proceed to ADJUSTING PRO COLD INFLATION PRESSURE.

10. Disconnect shop air supply at target gauge.
11. Disconnect target gauge from controller test port.
12. Reinstall test port vent, if included, in store position.
13. Close controller cover and open controller supply valve to restore system to normal operation.

ADJUSTING PRO COLD INFLATION PRESSURE

NOTE: To properly perform this procedure, there must be sufficient air pressure in the trailer air tank and the trailer parking brakes must be set.

When adjusting TIREMAAX PRO, Deflation Pressure must be set 10 psi above Inflation Pressure. The order in which the adjustments are made depends on the direction of change:

 NOTICE: Air will continuously vent out the controller exhaust ports if these settings are reversed or set too close.

 If increasing Inflation Pressure: first ADJUST PRO DEFLATION PRESSURE, then ADJUST PRO INFLATION PRESSURE.

 If decreasing Inflation Pressure: first ADJUST PRO INFLATION PRESSURE, then ADJUST PRO DEFLATION PRESSURE.
InstallatIon, servIce and troubleshootIng Procedures

Adjust PRO Inflation Pressure
This adjustment is set at the controller regulator (Figure 55 on page 51).

IMPORTANT: The TIREMAAX PRO system is designed to operate with cold inflation pressures between 85 and 120 psi. Setting the inflation pressure outside of this range may cause the system to function improperly.

1. Set trailer parking brakes and open the controller supply valve.
2. Remove regulator cap by pulling to right side.
3. Use a 1/8 Allen wrench to adjust controller regulator until desired Inflation Pressure is reached:

NOTE: Always approach the Inflation Pressure setting from an increasing-pressure direction.

A. If Inflation Pressure is set too low, increase pressure by rotating the regulator adjustment screw clockwise (as viewed from the end of the screw).

B. If Inflation Pressure is set too high:
 i. Decrease it by rotating the regulator adjustment screw counterclockwise (as viewed from the end of the regulator screw).
 ii. Use pressure relief button on target gauge (Figure 56) to lower Inflation Pressure at least 5 psi below the desired Inflation Pressure setting. Close valve.
 iii. Turn screw clockwise again to the desired Inflation Pressure.
4. Reinstall regulator cap.

Adjust PRO Deflation Pressure
This setting is performed at the controller’s PRM (Figure 55 on page 51). For proper operation, Deflation Pressure must be set to 10 psi above Inflation Pressure.

1. Set trailer parking brakes.
2. Close controller supply valve at the controller (Figure 55 on page 51).
3. Connect clean, dry shop air supply to target gauge using the 1/4 inch quick connect (Figure 56 on page 51). An air supply at least 15 psi above the desired cold Inflation Pressure is required.
4. Open gauge shop supply valve. The flowing air should create an audible sound that will stop when current Deflation Pressure is reached.
5. Close gauge shop supply valve.
6. Observe pressure gauge to ensure no leaks are present and pressure remains constant. If the pressure does not remain constant, leaks exist. Repair the leaks before continuing.
7. Read and record current Deflation Pressure at gauge. If not correct, go to the next step. Otherwise, go to next procedure.
8. If adjustment is needed, use 1/8 inch Allen wrench to adjust PRM set screw (Figure 55). (A quarter turn is approximately 5 psi.)
 A. If Deflation Pressure is low, turn the PRM set screw clockwise, then return to Step 4.
 B. If Deflation Pressure is high, turn the PRM set screw counterclockwise, then return to Step 4.

Restore PRO System to normal operation
At this point, the controller should be set to the desired Inflation Pressure and Deflation Pressure. To restore system to normal operation:

1. Close controller supply valve.
2. Disconnect shop air supply from target gauge.
3. Disconnect target gauge from controller.
4. Close controller, secure latch and ensure controller supply valve is open.
5. Update decal on controller cover (Figure 47 on page 37), if necessary.
6. At each wheel-end, ensure all tire hoses are installed and properly secured.
INSTALLATION, SERVICE AND TROUBLESHOOTING PROCEDURES

WIRING HARNESS REPLACEMENT
As discussed in WIRE HARNESS OPTIONS AND DETAILS on page 34, various wiring harnesses are available.

NOTICE: To avoid arcing and other electrical damage, remove power to trailer. Observe electrical safety considerations when disconnecting and connecting wires and electrical connections.

With the standard wiring harness, replacement is simply a matter of disconnecting the existing harness and connecting the new one. On the standard harness, the red wire is the indicator lamp power lead and the blue wire is 12 VDC vehicle power. The termination of these wires is the responsibility of the harness installer. Terminals and connectors must be weatherproof and corrosion prevention compound must be used on all connectors. Refer to TMC RP 113, 114 and 120 for recommended wiring practices.

REPLACING PREMIUM ABS JUNCTION HARNESS
This procedure applies to Hendrickson components as listed in Figure 44 on page 34.

Removal
1. Turn off all power to trailer.
2. Disconnect the following:
 A. Five-pin ABS connector (Figure 44 on page 34).
 B. Five-pin power supply connector.
 C. Indicator lamp connection.
 D. Controller assembly connector.

Installation
For installation details and criteria, refer to ABS JUNCTION WIRE HARNESS INSTALLATION on page 35.
1. Connect the following:
 A. Five-pin ABS connector.
 B. Five-pin power supply connector.
 C. Indicator lamp connection.
 D. Controller assembly connector.
2. Refer to ADDING RESTRAINT TO WIRING on page 35 to weatherproof, secure and restrain harness and wiring as needed.

CONTROLLER ASSEMBLY REPLACEMENT
This procedure replaces the controller assembly as one complete unit. For controller connections, refer to:

For CP - Figure 53 on page 49
For PRO - Figure 55 on page 51

REMOVAL
1. Exhaust air from trailer air tank. This will cause trailer parking brakes to be set.
2. Disconnect controller electrical connector.
3. Disconnect air supply line. Label the line “SUPPLY” to avoid confusion when installing the new controller assembly.
4. (PRO only) Disconnect emergency air supply line. Label the line “EMERG” to avoid confusion when installing the new controller assembly.
5. Disconnect delivery air line. Label the line “DELIVERY” to avoid confusion when the new controller assembly is installed.
6. If reusing air fittings, remove air fittings from the ports on the controller assembly.
7. Remove mounting bolts and controller assembly enclosure from subframe.

INSTALLATION
1. Mount controller assembly enclosure to subframe using screws removed in removal procedure. Replace fasteners as needed.
2. If necessary, apply thread sealant to air fittings.
3. Install air line fittings on supply and delivery ports. Use the two-wrench method shown in Figure 22 on page 22 to avoid overtightening the fittings.
4. (PRO only) Repeat Step 3 for Emergency air supply port.
5. Connect air lines, labeled from removal procedure, to the appropriate ports:
 A. SUPPLY
 B. DELIVERY
 C. (PRO only) EMERG.
6. Connect controller assembly wire connector.
7. Recharge trailer air system.
8. Test for air leaks by listening or using soapy water. Refer to CHECKING FOR AIR LEAKS on page 45.

9. Perform MANUALLY CHECK TIRE PRESSURE on page 48 for at least two tires.

10. Check Inflation Pressure:

 For CP - CHECKING CP INFLATION PRESSURE on page 49
 For PRO - CHECKING PRO COLD INFLATION PRESSURE on page 52

REPLACING HUBCAP WINDOW

Replacement hubcap window kits are available (Hendrickson literature number L878 TIREMAAX® Parts List) for various TIREMAAX hubcap windows. The kits include the window, seal, gasket and mounting hardware (Figure 57).

When replacing the window, assemble in the order shown in Figure 57. Tighten Tri-Lobe screws to 23±2 in. lbs. (3 Nm) of torque in sequence shown.

WHEEL REMOVAL AND INSTALLATION

Set trailer parking brakes and disable the system before wheel removal.

 1. Close supply valve on the controller to shut off pressure to the system.
 2. Turn vehicle off and disconnect tire hose(s) at both ends (Figure 27 on page 24).
 3. Observe and record wheel orientation (clocking) Refer to Figure 25 on page 23.
 4. Remove wheel(s) as needed.
CONVERTING FROM CP TO PRO
Plumbing from the delivery port to the hubcap is the same for current TIREMAAX® CP and PRO systems. To convert, only the controller and hubcaps need to be exchanged.

IMPORTANT: For converting legacy TIREMAAX® CP or EC systems purchased prior to April 2012; the axle hose, axle vent, spindle plug and tire hoses must also be changed. Hendrickson recommends using the TIREMAAX ordering guide to configure a complete TIREMAAX PRO system, minus electrical components.

Electrical components are also the same or can be easily adapted as needed for both current and legacy systems.

Procedures for completing the conversion include:
• CONTROLLER ASSEMBLY REPLACEMENT on page 54
• HUBCAP INSTALLATION on page 22

If for legacy CP or EC systems, also include:
• AXLE HOSE INSTALLATION on page 17
• AXLE VENT INSTALLATION on page 20
• SPINDLE PLUG INSTALLATION on page 20
• TIRE HOSE INSTALLATION on page 24

For assistance or questions, refer to CONTACT HENDRICKSON on page 6.

APPENDIX A: GLOSSARY
References to system components mentioned in the following descriptions can be found in OPERATION on page 12, Figure 53 on page 49 and Figure 55 on page 51.

The following terms are relative to TIREMAAX® PRO and/or CP systems defined and discussed in this document:

Crack Pressure
A characteristic of spring-loaded check valves. The spring tension determines the pressure differential required to open the valve.

Deflation Pressure
This adjustment is set at the TIREMAAX PRO PRM to be 10 PSI above the Inflation Pressure. Tire pressures above this setting will be exhausted out the PRM exhaust port.

Emergency close (run-flat) pressure
A minimum pressure that tires will deflate to in the event of a catastrophic leak in the system.

Inflation Pressure
Set at the controller’s regulator, this is the desired tire pressure for tire inflation when tires are at ambient temperature. The optimal pressure is based on tire manufacturer’s tire load/psi charts and tables.

OE or OEM
Original Equipment Manufacturer

PRM
(Pressure Relief Module)
A unit in a TIREMAAX PRO controller that allows and controls tire deflation.

Rotary Union
Rotary air sealed assembly that allows air transfer from fixed spindle to the rotating wheel-end and wheel(s).

TIS
(Tire Inflation Systems)
A system designed to maintain desired pressure in tires and activates a warning to alert the vehicle operator if there is a system or tire leak.
APPENDIX B: EXPECTED PERFORMANCE

Figure 59 charts expected tire pressure change, without a Tire Inflation System, relative to changes in ambient temperature. In the example, the trailer was at an ambient temperature of 70º F when the tires were inflated to 100 psi.

Figure 60 plots typical tire pressure changes for a cold tire inflation to 100 psi. In the chart, the tire temperature matched an ambient temperature of 70º F when the tire was inflated to 100 psi. The trailer was then driven to a location where the ambient temperature was 20º F, per the example of Figure 59.

During travel, the tire pressure dropped to 89 psi (a difference of 11 psi) when the distinction was reached.

<table>
<thead>
<tr>
<th>Ambient Temperature when the pressure is measured</th>
<th>Ambient temperature when target tire pressure is set</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40</td>
<td>100 97 95 92 90 88 86 84 82 80 78 76 74 73 71 70 68</td>
</tr>
<tr>
<td>-30</td>
<td>103 100 97 95 93 90 88 86 84 82 80 78 77 75 73 72 70</td>
</tr>
<tr>
<td>-20</td>
<td>105 103 100 97 95 93 90 88 86 84 82 81 79 77 75 74 72</td>
</tr>
<tr>
<td>-10</td>
<td>108 105 103 100 98 95 93 91 89 86 85 83 81 79 77 76 74</td>
</tr>
<tr>
<td>0</td>
<td>111 108 105 103 100 98 95 93 91 89 87 85 83 81 79 78 76</td>
</tr>
<tr>
<td>10</td>
<td>114 111 108 105 103 100 98 95 93 91 89 87 85 83 82 80 78</td>
</tr>
<tr>
<td>20</td>
<td>116 113 110 108 105 103 100 98 95 93 91 89 87 85 84 82 80</td>
</tr>
<tr>
<td>30</td>
<td>119 116 113 110 107 105 102 100 98 95 93 91 89 87 86 84 82</td>
</tr>
<tr>
<td>40</td>
<td>122 119 116 113 110 107 105 102 100 98 96 94 92 91 90 88 86</td>
</tr>
<tr>
<td>50</td>
<td>125 121 118 115 112 110 107 105 102 100 98 96 94 93 92 90 88</td>
</tr>
<tr>
<td>60</td>
<td>127 124 121 118 115 112 110 107 105 102 100 98 96 94 92 90 88</td>
</tr>
<tr>
<td>70</td>
<td>130 127 123 120 117 115 112 109 107 105 102 100 98 96 94 92 90</td>
</tr>
<tr>
<td>80</td>
<td>133 129 126 123 120 117 114 112 109 107 104 102 100 98 96 94 92</td>
</tr>
<tr>
<td>90</td>
<td>136 132 129 126 122 120 117 114 111 109 107 104 102 100 98 96 94</td>
</tr>
<tr>
<td>100</td>
<td>138 135 131 128 125 122 119 116 114 111 109 106 104 102 100 98</td>
</tr>
<tr>
<td>110</td>
<td>141 137 134 131 127 124 122 119 116 114 111 109 106 104 102 100</td>
</tr>
<tr>
<td>120</td>
<td>144 140 137 133 130 127 124 121 118 116 113 111 109 106 104 102 100</td>
</tr>
</tbody>
</table>

For example: Target tire pressure is set to 100 psi in Little Rock, Arkansas, where the air temperature is 70 degrees F. The trailer is then driven to International Falls, Minnesota, where the air temperature is 20 degrees F. Instead of 100 psi, the pressure in the tires is now 89 psi, due solely to the effects of temperature on pressure.

NOTE: Temperature values in chart above are only for 100 psi target tire pressure.

Figure 59: Ambient temperature when target tire pressure is set
Figure 60: Typical tire maintenance system performance at 100 psig